
AD-A241 283

NAVAL POSTGRADUATE SCHOOL
Monterey, California

;VSTAr SIV

_ I IIII

0-

THESIS

DOPPLER PROCESSING OF PHASE ENCODED
UNDERWATER ACOUSTIC SIGNALS

by

Randy M. Eldred

September 1990

Thesis Advisor: James H. Miller

Approved for public release; distribution is unlimited

91-12260
,,~ ~ ~ ~ 0; , o3 oo8Iiil~l;llill~lill;lll!



UNCLASSIFIED
SECURITY-CLASSIFICATION OF THIS PAGE

Form ApprovedREPORT DOCUMENTATION PAGE OMBNo. 0704.0188

la REPORT SECURITY CLASSIFICATION lb, RESTRICTIVE MARKINGS

UNCLASSIFIED I
2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release;
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE distribution is unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(Si

6a. NAME OF PERFORMING ORGANIZATION - 6b OFFICE SYMBOL 7a. NAME OF MONiTORiNG ORGAN,ZATION! (If applicable)
Naval Postgraduate School EC Naval Postgraduate School

6c. ADDRESS (City, State. and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

8a. NAME OF FUNDING, SPONSORING r8b OFFICE SYMBOLt. 9 PROCUREMENT JNSIRMENT IDENTiEiCATiON NUMBER
ORGANIZATION (if applicable) - -"

8c. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNIING'NUMBERS... LEE3T O; : . iTASK IWORK UNIT
PROGRAM IPROJECT AK ~ OKUI
ELEMENT NO -NO % NO ACCESSION NO.

11, TITLE-(Include Security Classification)

DOPPLER PROCESSING OF PHASE ENCODED UNDERWATER,.ACO.USTIC SIGNALS

12 PERSONAL AUTHOR(S)

ELDRED. Randy M. -
13a, TYPE OF REPORT 13b TIME COVERED 1.DTOFRPT YantDa)15 PAGE COUNT
Master's Thesis FROM _ TO___ 1990 September 1 108

16. SUPPLEMENTARY NOTATONThe views expressed in this thesis are'those of the
author and do not reflect the official policy or position of the Depart-
ment of Defense or the US Government.
.7 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block numbe)

FIE.D GROUP SUB-GROU P  acoustic tomography; Fast Hadamard Transform;
maximal-length sequences; Doppler ProcessingI

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

Travel time of an acoustic signal from transmitter to receiver provides a
great deal of information about the ocean environment. Variations in the
travel time of the signal may be caused by the changes in the sound speed
along the path. Since sound speed is a function of pressure, temperature
and salinity, measurement of this parameter in acoustic tomography pro-
vides a means to observe ocean fluctuations through the use of inverse
techniques. The upcoming Heard Island Experiment will attempt to determinE
the feasibility of measuring global warming by measuring changes in signal
travel time that may be caused by temperature changes in the world's
oceans. The signals to be transmitted in this experiment are phase en-
coded maximal-length sequences of various lengths which are well suited to
measurement of travel time. The objectives of this thesis are to provide

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
[21UNCLASSIFIEDUNLIMITED 0 SAME AS RPT -l flTIC IJSFRS UNCLASSIFIED

22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (include Area Code) 22c OFFIC SYMBO..
MILLER, Jamps H. 40R-646-2384 PCMr
DD Form 1473, JUN 86 Previous editions are obsolete SECURITY CLASSIFICATIONi Ow THIS PAGE

S/N 0102-LF-014-6603 UNCLASSIFIED
i



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

19. cont.
a software package, in C, that will allow participation as a receiver
in this experiment, and to provide a general capability to process any
maximal-length sequence, transmitted at any carrier frequency and with
any reasonable Doppler. A background on wave propagation, maximal-
length sequences, and Doppler processing are presented in this thesis.

Acoession For

NTIS GRA&I
DTIC TAB 0
Unannounced 0

..Justificatio-

By*
Dis~y1.bUtion/
Availability CodevW

Avail and/or
Dist Special

- j _

DD Form 1473, JUN 86 ;ECUnIIY CLASIrICAIIOI OF IIIIS PAG

UNCLASSIFIED
ii



Approved for public release; distribution is unlimited.

Doppler Processing of Phase Encoded Underwater Acoustic
Signals

by

Randy Michael Eldred
Lieutenant, United States Navy

B.S., University of Delaware, 1983

Submitted in partial fulfillment of the requirements
for th- degree of

MASTER OF SCIENCE IN ELECTRICAL
ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
September 1990

Author: / -

Randy Michael Eldred

Approved by: "-
Ja~s H. Miller, ThesisAdvisor

Murali Tummala, Second Reader

Michael A. Morgan, Chairman, Department of Electrical and
Computer Engineering

iii



ABSTRACT

Travel time of an acoustic signal from transmitter to receiver providts a

great deal of information about the ocean environment. Variations in the travt'

time of the signal may be caused by the changes in the sound speed along the

path. Since sound- speed is a function of pressure, temperature and salinity,

measurement of this parameter in acoustic tomography provides a means to

ebserve ocean fluctuations through the use of inverse techniques. The upcoming

Heard Island Experiment will attempt to determine the feasibility of measuring

global warming by measuring changes in signal travel time that may be caused

by temperature changes in the world's oceans. The signals to be transmitted in

this experiment are phase encoded maximal-length sequences of various lengths

which are well suited to measurement of travel time. The objectives of this

thesis are to provide a software package, in C, that will allow participation as a

receiver in this experiment, and to provide a general capability to process any

maximal-length sequence, transmitted at any carrier frequency and with any

reasonable Doppler. A background on wave propagation, maximal-length

sequences, and Doppler processing are presented in this thesis.

iv



TABLE OF CONTENTS

I. IN~TRODUCT~'ION.................................................... 1

A. THESIS SUMMAARY .................................................. 1.

B. THE HEARD ISLAND EXPERIMENT ............................... 3

II. ACOUSTIC WAVE PROPAGATION.............................6

A. THE WAVE EQUATIONS.............................................. 6

1. Plane Wave Equation............................................... 6

2. Spherical Wave Equation............................................ 7

B. RAYPATH DETERMINATION ........................................ 8

1. Sound Speed............................................. ........... 9

2. Snell's Law......................................................... 9

3. Travel Time....................................................... 12

111. M-SEQUENCES AND HADAMARD PROCESSING ............ 13

A. INTRODUCTION...................................................... 13

B. SHIFT REGISTER FUNDAMENTALS ................................ 14

C. THE FAST HADAMARD TRANSFORM ............................ 17

IV. TIME-VARYING DOPPLER PROCESSING .................... 24

A. PHASE ENCODING OF M-SEQUENCES........................... 24

B. SIGNAL PROCESSING WITH ZERO DOPPLER................... 24

C. SIGNAL PROCESSING WITH DOPPLER........................... 28

V. RESULTS AND CONCLUSIONS ................................... 34

A. RESULTS .............................................................. 34

B. CONCLUSIONS ....................................................... 39

v



C. ADDITIONAL WORK................................................. 39

APPENDIX A ........................................................................... 41

A~PPEND~IIX B......................................... ................ 56

A. MAIN PROGRAM ..................................................... 56

1. MACROFILE..................................................... 56

2. SEQREM.......................................................... 56

B. INITIALIZATION PROGRAMS ...................................... 68

1. INITHAD........................................................ 68

2. FWDHAD ....................................................... 69

3. REVHAD ........................................................ 72

4. GET FLT COEF................................................. 73

C. DEMODULATION AND FILTERING .............................. 74

1. DEMODULATE.................................................. 74

2. HIGHPASS........................................................ 76

3. LOWPASSI....................................................... 78

4. LOWPASS2....................................................... 80

5. LOWPASS3....................................................... 82

D. FAST HADAMARD TRANSFORM (FHT) ......................... 85

1. HADAMARD ..................................................... 85

E. MAGNITUDE AND PHASE ......................................... 86

1. MAGPHASE..................................................... 86

F. UTILITY PROGRAMS ............................................... 87

1 . SETFILTER..................................................... 87

2. APLOT............................................................ 88

3. DO-PPLOT ........................................................ 90

4. MGEN ....... .................................................... 91

5. MAKEFILE....................................................... 93

6. EXAMPLE FILTER COEFFICIENT FILE .................... 93

vi



REFE~I3RE~NCES........................ ............... 95

IrNITIIAL D~ISTRIBUIOIN ~ISTr .........................98

vii



ACKNOWLEDGEMENTS

This work may not have been completed without the help of a select group of

individuals. First, I thank my thesis advisor, James H. Miller, for his never ending

patience and help when I was confused, and for always-being available when a problem

cropped up. For Kurt Metzger and Ted Birdsall, I would like to express my

appreciation for the papers and initial code they provided as a starting point in this

thesis. Also, I thank my parents, Deane and Charla Eldred, for their support during

those starting years, which without I would have never started. I would like to thank

my in-laws, Harold and Florence Plympton, for their encouragement and pride in me.

And most of all, I thank my wife Michele for her love, and undying support. She kept

me going, even when I didn't want to go.

viii



I. INTRODUCTION

A. THESIS SUMMARY

The objective of this thesis is to develop a program in the C programming

language [Ref. 1] that can process acoustic signals used in ocean acoustic

tomography. The goal of tomography signal processing is the precise

measurement of acoustic travel time, the integral along the raypath of inverse

sound speed. Travel time is a fairly well understood function of temperature,

salinity, and pressure. Once variations in the travel time are known, as well as

the travel times for multiple arrival paths, the fluctuations of the ocean can be

determined from mathematical inverse techniques [Ref. 2].

One method in which travel time can be measured is through the use of

explosive and implosive devices. These crude tools, however, are not exactly

repeatable. A better method that has been found employs the use of maximal-

length sequences as a phase modulation for bandpass signals. Maximal-length

sequences (m-sequences) or pseudo-random noise are well suited for this

application because of their deterministic nature, correlation properties, and

simplicity.

The goal of the work described in this thesis was to be able to measure

arrival time by performing replica cross-correlation of a transmitted acoustic

signal that has been p' 3se-encoded using m-sequences, and to be able to detect

that signal over any reasonable Doppler shift. Specifically, the programming

package should be able to:



1. Detect any phase encoded m-sequence transmitted with any carrier
frequency.

2. Scan over any reasonable Doppler range at any Doppler bin
spacing.

3. Provide filtering capability with any type filter.

4. Employ fast algorithms to minimize-processing time.

5. Be well documented and portable for future transfer to a dedicated
machine for real time processing.

The body of this thesis is structured as follows:

Chapter II. Acoustic Wave Propagation.

Chapter Ill. M-Sequences and Hadamard Processing.

Chapter IV. Time-Varying Doppler Processing.

Chapter V. Results and Conclusions.

Chapter 11 presents an introduction to acoustic wave propagation in the ocean

environment. It includes plane wave propagation, spherical wave propagation,

the dependencies of sound speed on temperature and other parameters. Acoustic

raypath determination is discussed.

The third chapter is an introduction to general shift registers and m-

sequences. The Fast Hadamard Transform is reviewed to provide the

background necessary to understand the programming package.

Chapter IV presents the signal processing aspects of the thesis. It first

presents basic ph2se encoding using m-sequences, and then develops the treatment

of a signal with zero Doppler. And finally, the nonzero Doppler case is

presented.

Appendix A contains the results from all Doppler considerations. Appendix

B is the source code for the thesis work as well as some supplementary

2



programs. Supplementary programs include: p!otting routines using VAX NCAR

Graphics [Ref. 3], a routine for generating shift register states and corresponding

m-sequences in a (1,-i) format for viewing before processing, if desired.

Finally, a MATLAB program that can be used for generating filter coefficients

for a Butterworth bandpass filter and a Chebychev lowpass filter. The filter

coefficients are stored to a file that can be read by the main program SEQREM.

Documentation of the source code should be sufficient for the typical-user to

understand the general operation of the program without much difficult3y, and is

built using standard C functions and coding to minimize any portability

problems.

B. THE HEARD ISLAND EXPERIMENT

The first direct application of this thesis is planned for the beginning of

1991. From January 23 - February 4, 1991 an experiment to determine the

feasibility of measuring global warming using underwater acoustic signals is to

take place and is currently designated the Heard Island Experiment [Ref. 4]. It is

hoped that changes in the temperature of the Earth's ecosystem can be measured

by observing changes in travel time of an acoustic signal over distances which

include one or more oceans. Travel time is related to water temperature, as well

as other parameters, so that a change in travel time might be related to warming

of the Earth's atmosphere, which would also cause a overall warming of the

world's oceans. If these two parameters can be related, then existence of global

warming might be determined.

The signals will be transmitted from the vicinity of Heard Island in the

southern Indian Ocean with raypaths that reach several receiving sites in the

Indian Ocean, the Atlantic, and the Pacific as shown in Figure 1.1. The

3



transmitting vessel will be the m/v Cory Chouest. Preliminary ray traces have

shown that one possible reception site is the Monterey Peninsula [Ref. 5].

Participation is intended by the Naval Postgraduate School, and is one motivation

for this thesis. Of the many signals that will be transmitted, one is an m-

sequence of 255 digits with a Q of 5, and a carrier frequency of 57 Hz, where Q

is the ratio of digit frequency to carrier frequency and is normally selected to be

an integer number. A carrier of 57 Hz was chosen because of its long

propagation distance and also to help distinguish it from the common frequencies

50 and 60 Hz that are generated by a large number of power plants and

machinery world wide.

Detailed signal specifications are contained in Reference 4, but some of the

more general data are:

1. HLF4LL source.

2. Output power: 209 dB.

3. Signal to be transmitted using m-sequences

s(t) = Acos(27tft + M(t)xV)

where f, = 57 Hz.

M(t) is the m-sequence.

= 45 degrees, is the modulation angle.

4. Maximum of 3-5 knots to maintain way.

4



" I k IA 'I I I Ii I I ___

I I l i

LI I 

I I I I I I I A

S I Ii I ___VIv v

" I II A I

I I I X I I -,.."i~ riiii I , , _-
IIt1 I.-- \ I\ t

,x I/ I I

~I IL1JLL- / ____

"J 1 I 1 I V /1 /1
l:_ CiL1i lIt I/I VAFK i.

I . 1 r I sl-and/!/V / -
! I I ~I.. !1 ./5 I

_ I I" i I V -\,.. I , I,,.,___ .I
; 'YlA" ,I I! IvivAM I

7",,-1 IYb i I 1 I !I TI I '

Figure 1.1: Heard Island Raypaths.

5



II. ACOUSTIC WAVE PROPAGATION

A. THE WAVE EQUATIONS

Ocean acoustic signals frequently travel from source to receiver along

multiple paths. These multiple "raypaths" are formed as a direct result of the

nonhomogeneous structure of the ocean. However, understanding how waves

propagate in the ocean can be facilitated by first treating it as a homogeneous

medium and developing equations for wave propagation, and next, by the

introduction of Snell's Law and some basic rules for determining the raypaths if

a nonhomogeneous medium.

Sound travels as a result of the displacement of particles at some source,

which causes a local change in pressure. The resulting pressure change then

-propagates away from the source in a spherical manner as a pressure wave with

velocity c. At distances sufficiently far from the source the wave can be treated

as planar over a finite region.

1. Plane Wave Equation

Assuming the propagation direction to be in the x direction with the

wave front formed in the y-z plane, the pressure change and particle speed can

be related by the equation [Refs. 6,7,8]

ap(x,t) au(x,t)

ax at

where p(x,t) is pressure, u(x,t) is particle speed, and p is the density of water.

The rate of change of u(x,t) with respect to x is given by [Ref. 6]

6



au(x,t) 1 ap(x,t) (2.2)
ax B t'

where B is the bulk modulus of elasticity. Combining Eq. (2.1) and Eq. (2.2)

gives
2 2

a p(x,t) _ B a p(x,t)
2 P 2 (2.3)

at ax

The sound speed in water, c, is related to B and p and is given by

2 =B (2.4)
P

Substituting into Eq. (2.3) gives the acoustics plane wave equation [Refs. 6,7]

2 2
a p(x,t) 2a p(x,t)

2 c (2.5)2 2
at ax

2. Spherical Wave Equation

The next step in the process is to work backward from Eq. (2.5) and

find an expression for the traveling wave in spherical coordinates. First, assume

a point source with the pressure wave expanding radially. Instead of the single

dimension x, Eq. (2.5) is three dimensional. Changing coordinate systems from

linear to Cartesian and taking the Laplacian in place of the partial derivatives

with respect to position Eq. (2.5) takes the form [Refs. 6,7]

2

p(xyz,t) . c2  p(x,y,z,t). (2.6)2

at

Assuming no losses, a uniform traveling wave is simply a function of

distance r from the source and time, and is independent of angular displacement

7



from the source. Therefore, it is logical to convert to a spherical coordinate

system and use the spherical form of the Laplacian operator in Eq. (2.6). After

some simplification [Ref. 6], Eq. (2.6) becomes

2 2
(rp(rt)) 2 D (rp(r,t))

2 2 (2.7)
at Dr

where r is the radial distance from the source. This is the spherical form of the

wave equation and is a function of only the distance from the origin, and time. It

is the same as Eq. (2.5) with p(x,t) replaced by rp(r,t).

Given a complex sinusoidal pressure function, a solution to Eq. (2.7) is

given by

p(r,t) = P._m eJO( ), (2.8)
r

where Pm is the peak pressure amplitude at unit distance, and c is the nominal

sound speed [Ref. 6].

B. RAYPATH DETERMINATION

There are two fundamental reasons that an acoustic signal from a single

source may have multiple raypaths and corresponding arrival times at a single

receiver. First, the ocean is a nonuniform medium. It varies in depth

(pressure), salinity, and temperature. There are numerous currents, eddies and

tidal effects. Second, it is limited vertically by a sea-air interface and a sea-

bottom interface. Because of the first condition, sound speed is also nonuniform

and is a function of salinity, temperature, and pressure. Fortunately, a great deal

is known about the dependencies of sound speed in water and the behavior of

sound waves at the sea-air and sea-bottom interfaces. Applying this knowledge,

and Snell's Law, raypaths can be accurately determined.

8



2. Sound Speed

Sound speed formulation as a function of temperature, salinity, and

pressure has been determined numerically, and is approximately [Ref. 7]

c = 1449.2 + 4.6T - 0.055T 2+ 0.00029T 3 + (1.34 - O.O1T)(S-35) + 1.58xlOp (2.9)

where c is sound speed, T is temperature, P is gauge pressure of a column of

water, and S is salinity. For most applications salinity variations are small and

can be neglected. Pressure is a linear function of depth. Temperature gradients

and layers are found throughout the world's oceans and are in general a function

of depth. Warmer water tends to reside near the surface with colder

temperatures at deeper depths. A certain amount of mixing can also occur to

form isothermal and isosaline water. Temperature layers can also be formed due

to currents and eddies. Sound waves can be thought of as tending to bend toward

points of lower sound speed, as will become apparent in the next section on

Snell's Law.

2. Snell's Law

A raypath through the ocean medium can be determined by considering

the sound speed versus depth to be a continuous function, implying a

continuously stratified medium. Changes in propagation path can be computed

by treating the entire stratified medium as a set of n layers, and determining the

refraction from medium 1 to medium 2, then 2 to 3, and so on to medium n.

This is done through the use of Snell's Law, which is derived in several texts

[Refs. 6,7]. Stated here, a sound wave (ray) will be refracted from medium to

medium according to the relation

9



sin(0 1) sin(02) sin(O) (2.10)
C1  C2  Cn

where 01 is the incident angle, measured from the ray to the vertical, and 02, ... ,

On are refraction angles. The constants c1, C2, ... Cn are the sound speeds in

medium 1, medium 2, and medium n, respectively. It is assumed that the energy

in the ray is constant through the boundary.

As an example, consider-the case where cl > c2. In this case, the sound

speed in-medium 1 is faster than that of medium 2. Rearranging Eq. (2.10) in

the following manner
C2 sin(O 1)CsI( = sin(02), (2.11)

it can be seen that ratio of c2 to c1 is less than one. For the equality to hold, 02

must be a smaller-angle than that of the incident angle, 01. This means the ray is

"bending" downward towards the medium with 'ie lower sound speed. Similarly

the ray bends upwards for the case when c2 > C-. In -other words, sound waves

bend toward the region of slower sound speed.

In reality, when sound impinges on a boundary between two mediums

the sound waves are both reflected and transmitted. Application of Snell's Law

remains the same for the transmitted wave, and the reflected wave has a

reflection angle that is equal to the incident angle. The transmitted angle remains

a function of the sound speeds of the mediurri on ejfit" ;'e of the boundary and

is given by Eq. (2.10). However, the amplitude of uce transmitted wave does not

equal that of the incident wave, because con:x, vation of energy must apply.

Therefore, the amplitude of the reflected and transmitted waves must sum to that

of the incid-nt wave at the boundary. Assuming the density of medium 1 and 2

10



to be the same, the ratio of the amplitude of the reflected wave to that of the

incident wave is given by [Ref. 6]
R c2 sin(0 1)- cI sin(0 2)

c2 sin(O1)'

where R is the reflected amplitude, i is tic. -,, ,. .niplitude, 01 is the incident

angle. 02 is the transmitted angle, and c1, ai.j - are the sound speeds in medium

1 and 2, respectively. Similarly, the raz, -f the transmitted to incident

amplitude is given by

T c2 sinr 8

c2-sin(a 1) + cI sin(0 2)' (2.13)

where T is the transmitted amplitude. For the case when ihe mediums do not

have the same density, the sound speeds ci in Fq. (2.12) and Eq. (2.13) are

simply replaced by
Zi = Pi C.-, (2.14)

where p,, and Z, are density and impedance of the-ith medium, respectively.

For -rays incident at ,iJ - sea surface the sound wa,'e is considered to be

totally reflected, and the amount of reflection at the ocean bottom is based on the

local bottom consistency. There are two special conditions that can be applied

with Snell's Law. In- the first case, when c, > c2 and the ratio of cl to c2 becomes

very large, the transmission angle 02 must approach zero. In this case, the wave

transmits perpendicular to the bouadary. In the second case, when c2 > c1, there

is a condition when the transmitted angle must be negative to satisfy Eq. (2.10).

However, 02 cannot be negative. This is the condition for total reflection and the

reflected angle equals the incident angle, and 02 is zero.

11



3. Travel Time

Once the sound speed as a function of depth has been determined, the

ray path- can be determined. Travel time can then be evaluated as an integral

over the raypath. Travel time, Ti, for a particular ray i from point a to b is

[Ref. 9]

Tj l dsc~~~)' (215)

where sound speed is assumed to be independent of time t. If th assumption is

made that

c(x,y,z) = c0(x,y,z) + c(x,y,z), (2.16)

where co(x,y,z)-is an assumed background soL~nd speed field, and 5c(x,y,z) is an

unknown sound speed field, Eq. (2.15) can then be written as

T-T =T f ds (8c(x,y,z)dsji= Toi + 8Ti- 2 (2.17)i ii Jco(x,y,z) 2 (217

a 1 a c0(xyz)

for 5c << co. The travel time T has been broken down into a travel time TO, c.ef

solely to the assumed sound speed field co, and 8Ti, a linear function of the

unknown 3ound speed field perturbation 5c(x,y,z). Variation in the arrival time

T, is a t,drturbation of the arrival time due to perturbations in the sound speed

along the path By measuring these variations and using linear inverse

mathematical techniques it is poss bie tc determine some desired characteristic of

this geophysical problem [Refs. 2,9].

12



III. M-SEQUENCES AND HADAMARD PROCESSING

A. INTRODUCTION

An important parameter in underwater acoustic tomography is the arrival

time of a transmitted signal. A very usefui means for measuring arrival time is

to apply an impulsive excitation to the system, in this case the ocean

environment. An impulse can be generated by explosive or implosive sources

cheaply and easily, but suffer from unevenness in the frequency spectrum, and

repeatability. Another method 'aivolves the use of pseudorandom noise.

Psuedorandom noise is determinis:i( ai,, is formed by a sequence of ones and

zeros known as a maximal-length sequence or m-sequence [Refs. 10,11]. M-

sequences are typically transmitted by using the ones and zeros of the sequence

([1,0] mapped to [-1,1]) to phase encode a carrier signal ['tefs. 12,13,14].

M-sequences are generated using a simple binary shift register that is formed

.cording to the desired primitive polynomial. Since the signal being transmitted

is known, a simple autocorrelation can be formed u.irg a bank of matched

filters. The resulting correlation is impulse-like, and has a shorter duration than

the originally transmitted signal and has a much larger amplitude, which makes

measurement of arrival time an easier task.

The following sections give a brief description of shift register fundamentals,

m-sequences, and fast Hadamard processing of m-sequences.

13



B. SHIFT REGISTER FUNDAMENTALS

A general sequence shift register generator is shown in Figure 3.1. A

sequence of ones and zeros can be output from any one of the registers starting at

any register state, except zero. In what follows all output sequences are taken

from the 0th register. The sequence of bits generated is periodic and will repeat

with some period L, based on the structure of the generator, as described by a

polynomial such as
g(D) = bnDn+bn.1 D"n +...+bD+bo , (3.1)

where D is the unit delay and bk are the feedback weighting coefficients. The

weighting coefficients take on values of one or zero indicating connection or no

connection to the kth register. All arithmetic operations for polynomials are

performed using finite-field arithmetic (modulo two) and are described in more

detail in Reference 10.

Figure 3.1: General sequence shift register generator for Eq. (3.1).

An example of a third order sequence shift register generator is shown

in Figure 3.2, and its corresponding generating polynomial is

g(D) = D3 + D + 1. (3.2)

In this-case Eq. (3.2) happens to be a primitive polynomial, where a primitive

polynomial is any polynomial that will not repeat its register state until after

2n- delays, where n is the number of delays in the shift register generator.

14



Therefore, a shift register that is defined by a primitive polynomial will generate

a sequence that is of maximal-length- and is known as a maximal-length sequence

or m-sequence.

a'2  a I + a0

Figure 3.2: Shift register realization of Eq. (3.2).

Continuing with this example, the sequential output from the registers of

.,-igure 3.2 is then given as in Figure 3.3, where the initial register contents is

arbitrarily set to a2=l, al=0, a0=0 [Ref. 9].

The corresponding m-sequence is then obtained by taking any one column

from the register states top to bottom (or bottom to top). Note, that the

combination of [000] never occurs. This is because an initial value of zero will

not allow any transition in state and can be easily verified by inspection.

15



Cycle a2  al ao

1 1 0 0

2 0 1 0

3 0 0 1

4 1 0 1

5 1 1 1

6 1 1 0

7 0 1 1

8 1 0 0

Figure 3.3: Shift register contents when generating a third order rn-

sequence. The eighth cycle shows that the register begins to repeat.

The characteristics of the in-sequence is unchanged whether it is transmitted

in the forward or reverse direction, but when performing the fast Hadamard

Transform, reviewed in the next section, the direction in which the sequence is

transmitted is significant. Therefore, the top to bottom sequence will be

designated the "forward" code and the bottom to top the "reverse" code,

forwardm= 0011101

reverse m = 1011100. (3.3)

M-sequences have several desirable characteristics. Its correlation function

is triangular in shape, see Figure 3.4, and short in duration. It is deterministic,

once the polynomial is determined all output is known. It can be implemented

easily and is periodic. However, one major drawback is that its autocorrelation

requires N multiplies, and since the arrival time is never known, the input signal

must be correlated with all N shifted versions of the original sequence which

16



requires N2 multiplies. This can be overcome by us,. of the fast Hadamard

transform (FHT): discussed in the next section.

R (n)
N

n

-11 N

Figure 3.4: Autocorrelation function for a rn-sequence of length N.

C. THE FAST HADAMARD TRANSFORM

The autocorrelation of the input data sequence with all possible shifted

versions of the original m-sequence can be written as

001 1 0 - a
1001110 b
0100111 c

MD = 1 0 1 00 1 1 d (3.4)1 10 10 01 e
I 110 10 0 f
01±1010 g

where M is a matrix whose rows are the shifted versions of the forward code and

D is the input data vector. This product requires N2 multiplications. To reduce

this number, a Hadamard transform can be used. The third order Hadamard

matrix is given by

17



11111111
I1-1-11 -I1-i

H111-1-1-1- (3.5)

I1--1-1- I 1-

where H can be formed recursively from

H =[i] Hi+1 = [H (3.6)

and by performing a simple mapping of (1,-i) to (1,0). H can be written in a

form that is easier for most people to work with [Refs. 15,16,17],
0 0 0 0 0 0 0 0-

0±01 010
0011 0011 

H= 01100±10
0 0 0 0 ± 1 1 (3.7)01011010
00111±00
011010-01

It is can also be shown [Refs. 16,17] that the matrix H can be factored into

the product of two matrices consisting of a binary count, in this case from 0 to 7,
-000"

00 0011

H=AA = 0 1 1 0 0 0 0 111 0 0 0 i 0 1 0 3
100 011 1 (3.8)

10llj

The matrix M, Eq. (3.4), can also be factored into two matrices, L and S, given

by [Refs. 16,17]

18



1 0o
LS= 1 0 0 11

LS11 1 0 0 1 1 0 39

It is easily verified that

M=LS. (3.10)

Note that by adding a leading column of zeros to S, forming S', and a leading

row of zeros to L, forming L'. All possible combinations of ones and zeros are

formed in L', S', as in A, -with the differences between the matrices being the

order in which they occur. It is straight forward to find a matrix P such that

S'=AT P and another matrix U such that L'=UA. Combining these results maps

M' to the Hadamard matrix as [Ref. 16,17]

M'= L'S'= UAATP = UHP, (3.11)

where M' is the M matrix with an appended column and row of zeros in the first

row and column. Recall that the correlation was performed by forming the

product of the M matrix and the data vector D. By replacing M with M' and

forming a new data vector

a]
b
c

D'= (3.12)

f

and after substituting Eq. (3.11) for M' the correlation becomes

R'= M'D' = UHPD'. (3.13)

19



From this it can be seen that the matrix M is not needed and the Hadamard

matrix can be used in its place. By using the Hadamard matrix in the form of

Eq. (3.5) and forming a product with D', the result becomes a sum of the

individual terms of D' with + and - weights and has the form

a+b+c+d+e+f+g+h
a-b+c-d+e-f +g-h
a+b-c-d+e+f-g-h

H D' - a-b-c+d+e-g-g+h (3.14)
a+b+c+d-e-f-g-h
a-b+c-d-e+f-g+h
a+b-c-d-e-f+g+h
a-b-c+d-e+f +g-h

which when written in the form of a flow graph having the same form as the

well known fast Fourier transform shown in Figure 3.5, where the complex

multiplies are set to one [Refs. 9,16,17]. This is known as the fast Hadamard

transform (FHT).

All that is left is to determine the permutation matrices P and U. By looking

at how P and U must be formed, it can be seen that P must have ones at the

indices [Ref. 15,16]

ROW 0 1 2 3 4 5 6 7

COLUMN 0 2 1 4 6 7 3 5,

and U must have ones at the indices

ROW 0 4 2 1 6 3 7 5

COLUMN 0 1 2 3 4 5 6 7,

which correspond to the binary values of S' and L'. It turns out that the matrices

S' and L' provide all of the necessary information. All that is needed to perform

the desired multiplication is to permute the input data vector according to S',

form the FHT, and permute again according to L'. L and S are generated from

20



the primitive polynomial that defines the in-sequence using the generators shown

in Figure 3.6 for the forward code and Figure 3.7 for the reverse code [Ref. 15].

The modification to form S' and L' simply involves adding leading zeros to S

and L. Since the correlation is always over 2n_1 data points, a leading zero is

added to the input data vector D forming D' adding no new data. After

processing, D' holds the correlation function with the zero position containing

the average level, which may be used to remove the bias in the autocoliciaiion

function [Ref. 11].

Basic Element

A A+B

B A-B

a a+b+c+d+e+f+g+h

b a-b+c-d+e-f+g-h

c a+b-c-d+e+f-g-h

d a-b-c+d+e-f-g+h

e a+b+c+d-e-f-g-h

f a-b+c-d-e+f-g+h

g a+b-c-d-e-f+g+h

h - a-b-c+d-e+f+g-h

Figure 3.5: Basic fast Hadamard transform element for cascading
additions and the full diagram for an eight point FHT.

21



C0 C 1  C 2  Cn-i

Column I Column 2 Column n

Row I

C Row 2

P--4Row n

(b)

Figure 3.6: (a) L generator and (b) S generator for the forward
code.

22



C 0 C IC 2Cn1

Column i Column 2 Column n

Row I

C Row 2

Row n

(b)

Figure 3.7: (a) 1, generator and (b,) S generator for the reverse code.

23



IV. TIME-VARYING DOPPLER PROCESSING

A. PHASE ENCODING OF M-SEQUENCES

A simple method in which m-sequences can be-transmitted is to phase encode

the digits using a mapping of (0,1) to (1,-1) and appropriately selecting a phase

angle which will maximize the signal-to-noise performance. The phase angle

that optimizes this is
V _ =tan-l( -), (4.1)

where V is the phase modulation angle, and N is the length of the sequence [Ref.

11]. However, for the Heard Island Experiment, i = 45 degrees is used to

simplify SNR estimation. The transmitted signal s(t) takes the form

s(t) = Acos(2itfct + M(t)4f), (4.2)

where A is the amplitude, fc is the carrier frequency, and M(t) takes on values of

+1 or -1 depending on the m-sequence code. The minimum length of time M(t)

remains constant is the digit duration d.

It is normal practice to chose an integer number of cycles, Q, of the carrier

frequency per digit.

B. SIGNAL PROCESSING WITH ZERO DOPPLER

At the receiver the signal is normally sampled at an integer multiple of the

carrier frequency fc, i.e. with fs = mfc, where m is chosen to be an integer

greater than two, to ensure that the Nyquist criterion is satisfied, and fs is the

sampling frequency. Sampling in this fashion simplifies processing and

interleaving of data, since there is an integer number of data points per digit d.

The received signal is r(t) - s(t - T1), assuming no attenuation, no dispersion, and

24



a single raypath. The sampled input r(n) is then den odulated to remove the

carrier from the signal. The received signal r(n) will arrive at some unknown

arrival time Ti, and must be multiplied by both the sine and cosine functions to

form the in-phase and quadrature components p(n) and qkn), respectively [Ref.

18]. For p(n) this then gives
27tfen 27ifcf,

p(n) =,Acos(- + M(n- - ' " 2 '
f S fS

A n ,4_fM + nfn sp(n) = [cos(M(T - Ti)w) + cos( f + Ti) ()4,
+ (4.3)

and similarly for q(n)

A r - 4rfn (q(n) = T [sin(Mk. -Ti)x) - sin( + M(F- Ti)xV)].
S S S(4)

The high frequency components are then removed by lowpass filtering with the

cutoff frequency greater than the digit bandwidth. The resulting waveforms are

A np(n) = -cos(M(n- Ti) )
SA . n

q(n) = - sln(M(t - T)W) '  (4.5)

which are constant over the length of the digit of M(n).

Because of the lower digit bandwidth, decimation in time may be performed

without any loss of information [Ref. 19]. This significantly reduces the data

rate and storage requirements of the processed data. Further processing follows

the scheme of the previous chapter. The input data vector is permuted, the FHT

is performed, and permuted again to the correct order. Multiple samples per

digit must be accounted for by interleaving when performing the FHT on a given

sequence length. Finally, magnitude and phase are computed in the normal

fashion.

25



The autocorrelation function, see Figure 3.4, for m-sequences has a negative

DC level for all digit positions except the first. A correction may be made which

will adjust this level-to zero. Knowing the phase modulation angle, the DC bias

-can be removed by adding the correction

Ccor = fILavg, (4.6)

where Ccor is the complex level adjustment, Lavg is the average DC level from

the FHT, and f, is given by the relation [Ref. 11]
flj(N+I1) tan(iV) + j(N - tan 2()

2 2
N+tan2 2( ' (4.7)

where N is the length of the m-sequence and V is the phase modulation angle.

Since all parameters of Eq. (4.7) are known, f, is computed once at system

initialization and Ccor requires one complex multiplication for each data length

processed.

A block diagram showing the process is-given in Figure 4.1. Note that in

this case a Butterworth filter of order ten was used in the passband and a

Chebychev filter of order five was used for the lowpass filter. Any filter type

can logically be substituted.

26



10t Order
Buttervorth-
BP Filter.

cos (2un/f ) 4 sin(2Ufin/f.)

5 tL Order 5 t Order

Chebychev Chebychev
LP Filter. LP Filter.

Decimate Decimate

D:1 Dt:

FHT FliT

Magnitude

Figure 4.1: Block diagram of signal processing with zero Doppler.

27



C. SIGNAL PROCESSING WITH DOPPLER

Generally in acoustic tomography the receiving or transmitting ship

must maintain way and/or buoys are acted on by the forces of currents, tides,

wind etc., all of which cause relative motion between the receiver and

transmitter. The Doppler shift that is then imparted on the signal must be

corrected for at the receiver. For the relatively slow and uniform speeds

encountered in acoustic tomography it-is sufficient to compensate for first order

Doppler, and neglect acceleration effects [Refs. 20,21].

When Doppler is present a transmitted-signal s(t) may be received as

r(t) = s[(l + v t - Ti], (4.8)

c

where v is the velocity in meters/second, c is the nominal sound speed in water in

meters/second, and Ti is the delay from transmitter to receiver as in section B,

where attenuation, dispersion, and a single raypath are assumed. The magnitude

of the spectrum of r(t) can be given as

IR(f)I= S[ ]

Sampling at an integer multiple of the carrier frequency assuming zero Doppler

and replacing the time dependency with the discrete index n gives

r(n) = S(ts- Ti ).
(4.10)

With Doppler, the received signal is then given by

28



n(1 +%/c)r(n) = s [(7 - ) - Ti]"s (4.11)

Adjusting the sampling frequency by the same Doppler shift gives a new

sampling frequency of
fjfs(l+V/c)' (4.12)

which forms a new received signal
n (1 + vc)

r'(n) = s[( n /)- Til
f' S (4.13)

Substituting Eq. (4.12) into Eq. (4.13) yields

r'(n) = s( n - Ti ) = r(n). (4.14)

At this point the results are identical and processing of the data can proceed as in

the zero Doppler case [Ref. 20].

Two methods can be employed to perform the adjustment to the

sampling frequency as discussed. The first is to use a bank of sampling devices

that sample at a set of sampling frequencies that cover the desired Doppler range

such that each device samples at frequencies fs1fs2*...fsk. This method requires a

great deal of hardware and is inflexible and expensive to implement. The second

method is to frequency shift the received signal and interpolate between samples

at the new sampling frequency to predict the value of the signal as if the desired

sampling frequency had been used [Refs. 20,21].

Doppler resolution is 1/TA Hz, where TA is the analysis interval [Ref.

20]. For example, a N=255 length m-sequence with Q=5 and fc=57 Hz giving a

TA of 22.368 seconds and a resolution of 0.04471 Hz, which from Eq. (4.12)

corresponds to a Doppler shift of + or - 2.3 knots. Figure 4.2 is an ambiguity

plot derived from this example. The plot shows signal arrival time for the given

29



m-sequence versus signal Doppler over-a + or - 5 knot range. As can be seen in

the plot signal strength decreases as the carrier frequency moves away from the

zero Doppler case and is not detectable at about 2 knots on either side of center.

Frequency-shifting in the frequency domain is equivalent to multiplying

the samples or the demodulates in the time domain by exp(j27tnfd/fs) [Ref. 20],

where fd is the Doppler shift of the carrier signal in Hertz. The Doppler shift fd

is-determined directly from the expected Doppler and is given by

fd= Vf •  (4.15)

For a sampling frequency that is four times the carrier the multiplication

exponential can then be related to the Doppler speed, v (meters/second), and the

multiplication of the demodulates in the time domain is by expontnv/2c). The

Ambi.guity Plot

a

11, N

22.368 sec

Figure 4.2: Ambiguity plot of Arrival Time vs. Doppler for a

theoretical sequence with N=255, Q=5, and fc=57 Hz.

30



data is then interpolated at the new sampling frequency corresponding to the

original sampling frequency shifted by the same amount of Doppler as given by

Eq. (4.12).

The Doppler processing scheme in this thesis is performed as follows.

Frequency shifting is performed by combining the shift with the demodulation

process. This reduces the number of complex multiplies by combining the

modulation angle and the frequency shift via simple addition, see Figure 4.3.

The resampled signal is then linearly interpolated [Ref. 21]. Since the Doppler

shift is unknown, except within some range, each data set is processed over the

entire Doppler range, where the Doppler step size is set in knots. Frequency

shifting and then interpolating results in the following expression for the

resampled signal [Ref. 21]

S(ta+h) = s(t)ej2fd t + h [s(tb)eJ 2,fdtb - S(t)eJ2r'a ], (4.16)
tb-ta

where ta< ta+h<tb and time replaces the discrete index n for clarity. The times ta

and tb correspond to sampled data points, and h is the time spacing from t. to the

point to be interpolated. The position h, varies from interpolation point to

interpolation point, according to the sampling period I/f,', as time progresses.

Other techniques for interpolating between samples are available but are slower

and more complex and will not be discussed here.

At this point processing continues as in the zero Doppler case. Figure

4.3 shows the process in block diagram form with an additional block for

performing coherent averaging to increase signal processing gain, if required or

desired [Ref. 18].

Figure 4.4 shows the Doppler resolution for a transmitted signal with

-1.4 knots of Doppler, using the parameters given in the above example without

31



noise, and was processed by this scheme. Note that these results are plotted on a

different scaling than that of Figure 4.2 but show the same results. The Doppler

resolution is again approximately + or - 2 knots as expected.

13P

LP LP

InpoateEIn oate

D: i : I

FET FI

Coherent Coherent
Average Average

Magnitude

Figure 4.3: Block diagram of signal processing with Doppler and

coherent averaging incorporated.

32



ARRIVAL TIME VS DOPPLER

-5 TO 5 KNOTS DOPPLER

Figure 4.4: Ambiguity plot for Arrival Time vs. Doppler for

sequence length N=255, Q=5, and fc=57 Hz, processed by SEQREM

program with no signal noise.

33



V. RESULTS AND CONCLUSIONS

A. RESULTS

The objective of this thesis was to develop a program in the C programming

language that can process any m-sequence at any carrier frequency over any

acceptable Doppler range. This objective has been fully met. The package

SEQREM has been developed, which will scan over any specified Doppler range

and specified Doppler step size. In cases where no Doppler is expected the

program skips the Doppler scanning procedure, reducing run time.

Programming allows for any carrier frequency, any type filter of any order, up

to twenty, and any size m-sequence, with dynamic memory space allocation for

array manipulation, limited only by the available computer memory. It permits

coherent averaging of sequence segments as specified at initialization, improving

processing gain, and computes and removes the DC bias in the autocorrelation

function. Decimation in time is performed which significantly reduces off-line

storage requirements for processed data.

Appendix A contains a complete set of processing results for all three cases,

closing, opening, and zero Doppler. In all of th- plots a 255 digit sequence is

used with Q = 5, and a carrier of 57 Hz, corresponding to one of the signals to

be transmitted in the Heard Island Experiment. The sampling frequency "q four

times the carrier frequency or 228 Hz. The simulated data assumes white

Gaussian noise. The plots are labeled with the Doppler that was processed and

with the sequence period, adjusted for the expansion or compression, according

34



to the Doppler bin. Decimation in time was performed at a ratio of ten to one.

Peaks correspond to the center of detection of the signal arrival within the

period. The leading edge of the peak is the actual arrival time and can be

extracted by an edge detection program. Sequential frames are aligned one

behind the other and represent increasing time along the y direction. All plots

are in magnitude. Phase plots are omitted for brevity. Some specific results are

contained here.

Figure 5.1 shows the detection of a zero Doppler signal that has been shifted

in time and has some arbitrary arrival phase. The signal is shifted approximately

three digits with an SNR = 0 dB.

The sequence removal process is linear and can detect multiple signal

arrivals. Figure 5.2 shows this clearly for two arrivals spaced 27 digits apart

(approximately 6 seconds) with SNR = -15 dB. Figure 5.3 shows the same signal

with one digit separation, and the signal arrival times are still resolvable.

The next figure, Figure 5.4, demonstrates the processing gain from coherent

averaging. The data is the same as that in Figure 5.1, but with each segment

output averaged over three frames, and a larger shift in arrival time. Note the

increased SNR as compared with Figure 5.1.

Figures 5.5 and 5.6 show the detection of two Doppler shifted signals. The

first is for an opening situation with -1.4 knots of Doppler and -12 dB SNR. The

second is a closing situation with 3.4 knots Doppler and a SNR of -15 dB.

Graphs of all Doppler bins searched are include in Appendix A. Appendix B

gives a brief description of the program SEQREM.

35



ARRIVAL TIME PLOT

0.00 KNOTS DOPPLER

Figure 5.1: Zero Doppler signal. N=255, Q=5, fc=57 Hz, 0 dB SNR.
ARRIVAL TIME PLOT

0.00 KNOTS DOPPLER

Figure 5.2: Zero Doppler signals, 27 digits apart. N=255, Q=5,

fc57 Hz, -15 dB SNR.

36



ARRIVAL TIME PLOT

0.00 KNOTS DOPPLER

Se.)

Figure 5.3: Zero Doppler signals, 1 digit apart. N=255, Q=5, fc=57

Hz, 0 dB SNR.

ARRIVAL TIME PLOT

0.00 KNOTS DOPPLER

Figure 5.4: Zero Doppler signal. N=255, Q=5, fc=57 Hz, -15 dB

SNR coherently averaged over 3 frames.

37



ARRIVAL TIME PLOT

-1 .50 KNOTS DOPPLER

tg l1

Figure 5.5: -1.4 knot Doppler signal. N=255, Q=5, fc=57 Hz, -12 dB

SNR.
ARRIVAL TIME PLOT

3. 0 KNOTS DOPPLER

PER

Figure 5.6: 3.4 knot Doppler signal. N=255, Q=5, fc=57 Hz, -15 dB

SNR.

38



B. CONCLUSIONS

The results of the previous section show that the software developed for this

thesis operates as desired. Sequence detection is performed as predicted, via

software compensation of sampling frequency, for any reasonable Doppler using

linear interpolation techniques. Linear interpolation may not be the optimum

interpolation method, but it has been demonstrated that it does work and is

simple and faster than more complex techniques. This software will enable the

Naval Postgraduate School (NPS) to participate in the Heard Island Experiment

and will provide an important processing capability for any future experiment,

and most importantly, a Doppler capability that was not previously possessed by

the Underwater Acoustics Systems Laboratory of the Electrical and Computer

Engineering Department at NPS.

C. ADDITIONAL WORK

Despite all of the advantages of this software, further work is necessary.

The program as it stands, operates close to real time on individual segments,

given the inherently low data rates used in acoustic tomography, but resides on a

ULTRIX-32 V2.0 operating system with a VAX 11/785 processor. This is a

time sharing system and is not designed for real time processing. Because of

this, long data sets end up with a reduced priority as time progresses, causing

slower execution from the user's perspective.

This problem will be remedied with the delivery of a Concurrent Computer

Corporation VME Native-Mode Data Acquisition System in November of 1990.

The intent is to transfer this software from the ULTRIX-32 system to this

machine. The VME supports multiple processors and can process 14 MIPs at 33

39



MHz. It uses a memory cached system of up to 128 MB. It can also support up

to 7 separate graphics heads. This system is capable of real time operation with a

UNIX type operating system and will be ideal for use with this programming

package. Given this system, the work that needs to be done includes:

1. Transfer of the existing program and related functions to the VME
system. This includes the SEQREM program, initialization
functions, FHT function, and magnitude computation routines.

2. Modification of the programs to incorporate real time processing in
a parallel vice serial structure. Data input to the system is first
read, processed, stored to file, and then the next segment is read
and so on. A parallel scheme is needed to allow reading of the next
data set while computation is progressing on the current while the
results of the last set are being displayed.

3. Design of an I/O system to handle data input and output channel(s).
Without the VME available, it was necessary to assume input data is
maintained in text file. Output is also to a file with sequential
Doppler searches appended to the same data file. The software also
assumes single channel input. It would be desirable to handle
multiple channels.

4. Development of a display software/system to present the data in an
convenient form, such as a waterfall type display. Currently,
plotting of data is performed off-line, after all computations are
completed. There is little flexibility for plotting various size data
sets and real time display is not possible.

5. Altering the Doppler bin search from a sequential to a parallel
operation. Currently in the data processing section, Doppler
processing is performed in increments via a standard "for" loop.

40



APPENDIX A

The results of Doppler processing for the three possible cases are given in

the following figures. Figure A.1 shows a zero Doppler signal. No scan is

made, since no motion is expected. Figure A.2 is a closing Doppler situation.

Doppler search is over a + or - 3.5 knot range, in 0.5 knot steps. Figure A.3 is

the opening case with a search over + or - 3.0 knots, also in 0.5 knot increments.

In each figure the following parameters apply: primitive polynomial = 5378, N

255, carrier= 57 Hz, T = 45 degrees, initial state = 18, Q = 5. White Gaussian

noise is assumed. Plots are displayed as arrival time versus time. This data

simulates a signal to be transmitted in the Heard Island Experiment.

ARRIVAL TIME PLOT

0.00 KNOTS DOPPLER

Itl

<~, i.k r
''j~

Figure A.1: Zero Doppler signal. SNR=O dB.

41



ARRIVAL TIME PO

3. KNOTS DOPPLER

(a)

ARRIVAL T111E PLOT

3,00 KNOTS DOPPLER

big I

(b)

Figure A.2 3.4 knot Doppler signal, 0.5 knot steps. SNR= -15 dB.

42



ARRIVAL TIME PLOT

2.50 KNOTS DOPPLER

(c)

ARRIVAL TIME PLOT

2.,00 KNOTS DOPPLER

(d)

Figure A.2 (cont.)

43



ARRI-VAL TIME PLOT

1. 50 KNOTS DOPPLER

(e)

ARRIVAL TIME PLOT

1.0KNOTS DOPPLER

S~cJUSEC.

Figure A.2 :(cont.)

44



ARR-LIAL T.IME PLOT

0.50 KNOTS DOPPLER

(00

ARRIVAL TiMr PLOT

0.00 K140TS DOPPLER

I~ i-'l~~jitII] en JI~

(h)

Figure A.2 :(cont.)

45



ARRIVAL TIME PLOT

-0.50 KNOTS DOPPLER

(N)o~

ARRIVAL TIME PLOT

-1.00 KNOTS DOPPLER

Figure A.2 :(cont.)

46



ARRIVAL 1111E PLOT

-1 .50 KNOTS DOPPLER

It I

ARIVAL TIEPO

-2.00 KNOTSDPE

jI

Ficrur A.2 cont.
47:~~j



ARRIVAL TIME PLOT

-3.00 KNOTS DOPPLER

ARRIVAL TIMlE PLOT

-2.50 KNOTS DOPPLER

(n)

Figure A.2 :(cont.)

48



ARRIVAL TIME PLOT

-3.50 KNOTS DOPPLER

(o)

Figure A.2 :(cont.)

ARRIVAL TIME PLOT

3.00 KNOTS DOPPLER

SEC)

(a)

Figure A.3 -1.4 knots Doppler, 0.5 knot steps. SNR= -12 dB.

49



ARRIVAL T-IME PLOT

2.50 KNOTS DOPPLER

SEC.

(b)

ARRIVAL TIME PLOT

2.00 KNOTS DOPPLER

(c)

Figure A.3 :(cont.)

50



ARRIVAL TIME PLOT

1 .50 KNOTS DOPPLER

ALI

(d)

ARRIVAL TIME PLOT

1 .00 KNOTS DOPPLER

IJill

(e)

Figure A.3 (cont.)

51



ARRIVAL TIME PLOT

0.50 KNOTS DOPPLER

ARRIVAL TIME PLOT

0.00 KNOTS DOPPLER

(g)
Figure A.3 :(cont.)

52



ARRIVAL TIME PLOT

-0.50 KNOTS DOPPLER

ARRIVAL TIME PLOT

-1 .00 KNOTS DOPPLER

Figure A.3 (cont.)

53



ARRIVAL TIME PLOT

-1 .50 K1NOTS DOPPLER

ARRIVAL TIME PLOT

-2.00 KNOTS DOPPLER

(k)

Figure A.3 :(cont.)

54



ARRIVAL TIME PLOT

-2.50 KNOTS DOPPLER

ARRIVAL TIMlE PLOT

-3.00 KNOTS DOPPLER

104s

Figure A .3 (cont.)

55



APPENDIX B

The following programs make up the SEQREM program or are associated utility

programs. Since sufficient documentation is included with each program, only a very

brief description is provided for each. This software may be obtained on floppy -disk

by contacting Professor James H. Miller at (408) 646-2384 or by writing to his address

in the initial distribution list on-page 98.

A. MAIN PROGRAM

1. MACROFILE

This is a a short file that holds definition macros and global variables.

/* MACROFILE includes the necessary libraries and declares global constants

and global variables for general use.

Variables:

scram - pointer to indices to scramble input data vector prior to FHT.

unscram - pointer to restore data vector after FHT performed.

law - polynomial law used to generate M-sequence.

degree - the degree of law.

initial - initial register load for generation of the sequence. *1

#include <stdio.h>
!include <math.h>
#include <malloc.h>

#define BTRMAX 11
#define PI 3.1415926536
#define FALSE (unsigned)O
#define TRUE (unsigned) !FALSE
unsigned *scram, *unscram, law, degree, initial;
char *malloco);

2. SEQREM

This program is the root of all the processing functions for sequence removal.

It uses standard file I/O and may be used with any standard input numerical format.

56



The program call is SEQREM, and the user is prompted for the following

information before processing may begin (Note: some parameters are requested from

within initialization functions, however, this is transparent to the user):

1. Data file containing formatted filter coefficients.

2. Primitive polynomial defining the m-sequence.

3. Initial register load.

4. Transmission direction, i.e. forward or reverse code.

5. Carrier frequency.

6. Sampling frequency (checks for four times carrier).

7. Phase modulation angle.

8. Cycles per digit, Q.

9. Desired time decimation, if any.

10 Coherent averaging desired, if any.

11. Expected Doppler range (knots).

12. Doppler search step size (knots).

13. Input data file.

14. Output data file.

Assumptions:

1. Sampling at four times carrier.

2. One period of m-sequence processed at a time.

3. M-sequence is taken from the least significant register.

4. Decimation ratio is a rational.

/* SEQREM performs sequence removal of a phase encoded M-Sequence. It is designed to work
for any maximal length sequence as defined by a primitive polynomial. The polynomial,
carrier frequency, sampling frequency, etc. are input by the user. All filtering and
demodulation is performed, but filter coefficients must be stored in an externa, file in the
format described by the function GET FLTCOEFO). For ease of use, these may be generated off
line by the MATLAB program SETFILTER.M.

57



M-Sequences my be transmitted in the forward or reverse direction.

? - is used as a wild card for brevity and may indicate 1,2,a,b etc.
in the following variable and file descriptions.

Variables:

c,ji,k,n,count - integer counters used Ih various loops.

dir,yesno - variables used for user inqueries.

numpts - number of points processed per digit, before and after
decimation.

num coh avg - number of frames to be coherently averaged.

vect-len - number of points in a sequence before decimation in time.

vect len inter - number of points need to be read for interpolation
of one segment length at the now sampling freq.

step - step size determined for decimation in time.

cycles - number of carrier cycles per digit, must be integer number.

firstrun - flag to determine if a segment is the first one to be
processed in the current doppler bin.

end - flag to determine when end of file has been reached.

secLlen - number of digits in a M-sequence.

highpass_?,lowpass?_? - pointer to storage for filter coefficients.

indatal,indata2 - array for data storage and processing storage before
decimation in time. Indatal is initially input
and then is imaginary part and indata2 is real part
(after demodulation).

h_data_im,h_data_re - arrays for real and imaginary vectors for storing
scrambled data for FHT processing.

redataimdata - arrays for real and imaginary data storage after data
unscrambling.

avg re, avgim - arrays for real and imaginary data storage when
coherent averaging is performed.

mag, phase - array for magnitude and phase of processed data.

fc,fs - pointers for carrier frequency and sampling frequency.

dclvl-im,dclvlre,pdstal re,pdstal im - used to remove correlation
dc bias.

ifact,rfact,ph ang - factors and phase angle used to compute
correction to dc bias based on phase modulation
angle.

den - tmeporary storage used in above calculations of dc bias.

58



snd-vel -input average sound-velocity to be used.

Ts..Ta,Ti- sampling period, sequence period, and interpolated sampling
period in doppler interpolation.

time s,time i - current relative sample time and interpolation time,
which are used -to compuUe h.

h - distance from time a to sample to be interpolated where
time a < h tire b.

ptrl,ptr2 - used to save position in array space when performing

doppler search.

doppler - current doppler shift being processed Wms).

doppler-start,doppler end - beginning and ending of doppler search
interval (mis).

doppler-step,doppler bin - doppler step size used in scan, and doppler
converted to radians for demodulation.

Functions:

init-had() - gets relevant parameters for computing scambling and

unscrambling indices.

fwd-hado rev-hado) - compute indices for foward and reverse trans-
mitted sequences. Both return polynomial
degree from input.

lowpass? Ohighpass() - identical functions for performing filtering
operations.

get -fltcoef() - retrieves filter coefficient data from user provided

demodulateo) - performs demodulation for input signal to dc. Paz an
argument doppler bin for doppler frequency shifts.

hadamard() - performs the FliT on scrambled data. Identical to FF7I
with multiplication factors omitted.

,asgphase() - computes the magnitude and phase of the processed data.*/

!include "macrofile .h

mnt c, j,k,n,i,dir,cycles,nun.%pts,step,vect len,vect len inter,count,num coh avg;
unsigned init hadO, rev -hadO,seclen, first -run, end;
void get fit coef C) ,hipass C),lowpassl C),dem~odulate(),hadamard(),ragphaseo;
void lowoass2 ), lowpass3 O;
float *hipass a, 'hipass b,*'bypass a, 'lowpass b, 'lowpassl a, 'low.passl-b;
float *indatai, 'h-data-re, -h_data in, 're-data, 'in-data, *fs. 'fc;
float 'nag, *phase,'avg-re, 'avg im,dclvl-re,dclvlin-,pdstalre~pdstal-i=:
float 'data -i -re, *data-i-in, rfact, ifact, den, ph-ang, doppler,snd-vel;
float doppler-start,time-s, time-i, h, Ts, Ta, Ti. *tem:p~ptr1, *temp ptr2;
float doppler end,doppler bin,doppler step, 'indatal. 'nevO);
mnt yesno;

59



char infile(21], outfile(21];
FILE *fpl,*fp2;

A* Initialize filter coefficients for a low and high pass filter. *

/* These values are computed and stored in a file off line. *

count = 0;

/* Allocate memory ror fc, fs, and filter coefficients to be used. 10th
order BUTTERNWO1 . bandpass, and 5th order CHEBYCHEV lowpass filters
must -be used. Filter coefficients are retrieved and filters are
initialized. Memory allocated to filter coefficients is freed after
initialization. *

fc - new(l);
fs - new(1);
-hipassa =new(BTRMAX);
hipass -b new(BTRMAX);
lowpassa new(BTRMAX);
lowpass-b -new(BTRkIAX);
iowpassl-a - new(BTPNAX);
lowpassl-b - new(BTRMAX);
get flt coef (hipass a,hipass b, lowpass a, lowpass b, lowpassl a, lowpassl-b);
hipass (hipass -b, hipass a, DTRMAX);
lowpassl~lowpass-b, lowpass a, BTRMAX-5);
lowpass2(lowpass b, lowpass a, BTRMAX-5);
lowpass3 (lowpassl b, lowpassl a, BTRMAX);
free(hipass_a);
free (hipass-b);
free~lowpass_a);
free(lowpass-b);
free(iowpasQ1_aW;
free (iowpassl-b);

/* Set sound velocity to desired value, for given conditions. *

prizntf("\nEnter the Average Sound Velocity (muters/sec.).");
ptintf("'\n\n Sound VeloCity: ;

scant ('%'2,&snd val);

/* In3tis2.ize parameters for M-Sequence, and set transmit direction.
W~t scrambling and unscrambling L~dices accordingly. *

printf("\nlb the M-Sequence transmitted in the toward or reverse\n");
printf ("direction? \n");
printf ("\n (forward=0/reverse=1) :")
scanf ("%d", &dir) ;
if (dir -= 0)

degree fdhad (law,lni tial, scram, unscram);
else

degree= rev -had(law1 initial, scram, unscram);
seqlen - (1«<degree)-1;

A* Compute offset to remove DC bies fromf correlation. *

printf("Wnnter the Phase Modulation Angle used to encode the signal.\n 1
printf("\n Phase Angle: "Q~
scanf("%f", £phang);

60



phang = ph_ang*PI/180;
den - seq_len*seqclen + tan(ph ang)*tan(phang);
ifact - (seq-len~l) *tan (ph ang)/den;
rfact = -(seq fen-tan (ph ang)*tan(phang))/den;

/* Input of transmission parameters and demodulator is initialized. */

printf("\nEnter the Carrier Frequency used.\n ");
printf("\n Fc: ");
scanf("%f",&fc(0]);
printf("\nEnter the Sampling Frequency. Sampling Frequency must be an");
printf("\nfour times the Carrier Frequency.\n");
printf("\n Fs: ");
scanf (:'%f", &fs [0])
if ( *fc/(*fs) != 0.25)

U
printf("\nSampling Frequency will not work with this program. Exiting!\n");
exit (1);

printf("\nEnter the number of carrier cycles per digit. An ");
printf("\ninteger number of cycles must be used.\n");
printf("\n Q: ");

scanf("%d",&cycles) ;

/* Compute sequence length in seconds (Ta) and sampling period. The number
of points generated per digit is computed and provided as an aid in
determining the decimation in time to be used, if desired. The total
number of points per sequence period is computed (vectlen).*/

numypts = (*fs/(*fc))*cycles;
vect len - num_pts*seq_len;
Ta = (float)(seq_len * cycles / *fc);/* computes the sequence length in sec.*/
Ts = l/(*fs); /* compute sampling period. */
printf("\nThere are %d pts per digit. For Processing Savings ",num pts);
printf("\ndecimation in time is performed. The default used is one point");
priitf("\nfor each cycle in the digit. In this case %d points are",cycles);
printf("\nprocessed per digit. (i.e. every %d th point.)", (num-pts/cycles));
printf("\n\n Use default?(yes=lI/no=O): ");
scanf ("%d", &yesno);
if (yesno == I )

step = num-pts/cycles;
else

printf("\nEnter the desired Decimation. (e.g. for every point enter l,\n");
printf ("for every other point enter 2, for every third point enter 3, etc");
printf("\nDecimation must be evenly divisible into the pts. per digit.");
printf("\n(NOTE: Decimation must be less than %d tc ensure \n",num pts);
printf (" at least one point per digit is used!)\n");
printf("\n Decimation: ");
scanf ("%d", &step);
if ( num-pts%step != 0)

printf("\nInvalid decimation. Try again.");
printf("\n Decimation: ");
scanf ("%d", &step) ;
if ( num-pts%step != 0)
printf("\nError. Bye!\n");

if (step > num-pts)

printf("\nDecimation chosen is too large, use a smaller number.\n");

61



printf("\n Decimation: ");
scanf ("%d", &step);
if (step > num-pts)
printf("\nSorry! Still won't work, aborting\n");

/* Determine if coherent averaging of sequences is desired for improving
processing gain.

printf("\nEnter the number of Sequence Frames to be coherently averaged.");
printf("\nNumber Frames - 1 implies no coherent averaging desired.\n\n");
printf(" Number Frames: ");
scanf("%d",&numcohavg);
if (num_coh avg <= 0)

printf("\nlnvalid Number of Frames. Must Use Positive Integer.");
printf("\n\n Number Frames: ");
scanf ("%d", &num cohavg);
if (num coh avg <= 0)

printf("\nlnvalid Number of Frames. Aborting!\n");
exit (1);

/* Query for Doppler range to be searched. An input of zero will cause
the resampling for doppler steps to be skipped. Doppler is coverted
from knots to meters/sec for computation. Sequence frequency resolution
is computed to assist in determining doppler bins to be searched. */

printf("\nEnter the doppler range to be searched (knots).");
printf("\n\n Doppler (+/-): ");
scanf ("%f", &doppler);
printf("\nOne knot corresponds to a %1.5f Hz shift"1,*fc-*fc*(l.0-O.5/sndvel));
printf(" in frequnecy.\nEnter the Doppler increment to be searched.");
printf("\n\n Step (knots): ");
scanf ("%f", &doppler step);
if (doppler step -= 0.0)

doppler step = 1.0;
doppler /= 2.0; /* convert knots to meters/second */
doppler step /= 2.0;
doppler start - -doppler;
doppler end = doppler;

/* Query for input and output files. */

printf("\nEnter Input File Name (20 Characters Maximum).\n");
printf("\n File Name: ");
scanf ("%s", infile) ;
printf("\nEnter Output File Name (20 Characters Maximum).\n");
printf("\n File Name: ");
scanf ("%s", outfile) ;
if ((fpl = fopen(infile,"r"))==NULL)

printf("\nUnable to Open Input File. Aborting!\n");
exit ();

if ((fp2 - fopen(outfile,"w"))==NULL)

printf("\nUnable to Open Output File. Aborting!\n");

62



exit (1)

/* After Decimation there are less data pts => comput new numpts. 9/

numpts /= step;

/* Set data length for input to maximum needed for highest doppler,
which corresponds to the maximum number of points used in interpolation.*/

Ti = Ts/(l + doppler end/sndvel);
vect len inter - Ti*vect_len/Ts + 1;

/* Allocate memory as required. */

indatal = new(vectlen inter);
indata2 = new(vectleninter);
imdata = new(numpts*seqlen);
re data - new(num-pts*seqlen);
mag = new(num-pts*seq_len);
phase new(num pts*seq_len);
avg-re = new(numrpts*seq-len);
avg-im = new(num-pts*seqlen);
h_data im = new(seq fen+l);
h_datare = new(seqlen+l);
data i_re = new(vectlen);
data i im = new(vect-len);

/* DATA PROCESSING SECTION.
Doppler processing is performed automatically according to the step
size specified by the user. Data is processed in lengths corresponding
one segment at a time. Sufficient points for complete interpolation
of one doppler shifted sequence are picked off the input file.
During doppler shift interpolation the input end point is saved for
processing in the next segment to insure segment continuity. 9/

for (doppler = dopplerstart;doppler <= doppler end; doppler+=doppler step)

/* Initialize demodulation routine. 9/

demodulate(fc,fs,doppler,vectlen);

/* Determine the sampling period for the new sampling frequency used in
interpolation, as a function of doppler. */
Ti - Ts/(1 + doppler/snd_vel);

/* If zero doppler case is being performed endpoint bookkeeping is not
used and data length is the same as input data (vectlen).

if (doppler !- 0

fscanf(fpl,"%f\n",&indatal (0);
vectleninter Ti*vect-len/Ts;
indatal++;
*indata2++ - 0;

else
vect len inter = vectlen;

/* Initialize flags and interpolation parameters. eirst run indicates

63



first segment being processed, and end indicates EOF reached. Time s
indicates current relative sampling ti.me and time i indicates current
relative interpolation time. ~

-time s = 0.0;
time i =Ti;
end =FALSE;
first run = TRUE;
doppler bin = PI * doppler/(2*snd-vel);

/* Ta is sequence length in seconds. Header is printed to separate
doppler scans. */

Ta = cycles * seqlen /(*fc * (1 + doppler/snd-vel));
fprintf (fp2, "START\n'1);
fprintf(fp2,111%6.2f KNOTS DOPPLERI\nI,2*doppler);
fprintf(fp2,"ISEQUENCE PERIOD (%7.4f SEC.) '\n",Ta);
fprintf~fp2,'%Sd %10.7f\n"s,seq len*numpts,Ta/(sec~len*num-Pts-l));

/* Process entire input file for current doppler search. *

while (!end)

for (j=0;j<vect len inter; j++)
if ((c~fgetc(fpl) )==EOF)

rewind(fpl);
demodulate(fc,fs,doppler,0); 1* clears demodulator for next run.*/
end = TRUE;

break;

else

ungetc (c, f pl);
fscanf(fpl, '%f\n",&indatalj));

/* Test for EOF reached before complete segment read. Prevents processing
partial segments. *

if (lend)

1* Test for first segment. If it is the first data point has not been
filtered, adjusts bookkeeping of endpoint. *

if ((doppler!=0.0) && first-run)

--indatal;
--indata2;
vect len inter +- 1;

1* Lowpassing and then highpassing reduces to a BP equivelant and avoids
comaplex numbers at this point. Caution: the filter phase must be linear
in the pass region. *

hipass(indatal,indatal~vect len-inter);
lowpass3 (indatal, indatal,vect len inter);
demodulate (indatal, indata2,doppler bin,vect len inter);
lowpassl (indatal, indatal,vect-len-i nter);
low/pass2 (indata2, indata2, vect-len-inter);

64



/* This loop performs a linear interpolation of the demodulates. Maintains
bookkeeping of endpoint, and first segment. Interpolates vectlen points
for hadamard processing. Skips this if zero doppler case.

if (doppler != 0.0)

i-0;
if (first run)

vect len inter -= 1;
first run = FALSE;

else

--indatal;
--indata2;

for (j=0; j<vect_len; j++)

/* First case is down shift of doppler. *1

if (timei > time s+Ts)

time s += Ts;
i++;

h - timei - time s;
datai_imiji = indatalfi] + (h/Ts)*(indatal[i+l)-indatal(i));
datai_reiji = indata2[i) + (h/Ts)*(indata2[i+l]-indata2[i]);

/* Reset sampling time and interpolation time. The relative time is important
only. */

time s = 0.0;
time i - h + Ti;
if (timei > 2*Ts)

time s += Ts;
i++;

/* Second case is upshift in doppler. */

else

h = time i - times;
datai_im(j] - indatal(i] + (h/Ts)*(indatal(i+l]-indatal(i);
data_irelj] = indata2li] + (h/Ts)*(indata2[i+l]-indata2[i]);
time i += Ti;

if (time i > times + Ts)

time s +- Ts;
i++;

time i -= time s;
times = 0.0;

65



/* Save indatal and indata2 working space. *

temp ptr. = indatal;
temp-ptr2 = indat62;
*temp-ytrl++ - indatalfi+1];
*temp-jtr2++ =indata2(i+1];

/* Set pointers to interpolated values *

indatal = datai im;
indata2 = data-i-re;

1* Decimate in time according to step. And compute sequence dc level. *

n=0;
dclvi re =0.0;
dclvi-im = 0.0;
for (J=0;J<vect_len;j+=step)

im-data In) indatalli);
re-data(n++) =indata2Cj);

1* Restore indatal and indata2 working space, when processing for doppler. *

if (doppler != 0.0)

indatal = temp ptrl;
indata2 - temp ptr2;

/* Scramble data vector and process data according to interleave via FHT
(HADAMARD) and unscramble. Real and imaginary par~s are processed
separately.

for (j=0; J<numpts; j++)

I_data-imlO) = 0;
h-data-re(0j = 0;
n=0;
for (k=0; k<(seqlen*numypts) ;k+-numyts)

h -data-im(scram(n)) - im-data(k+j];
h -data -re~scram(n++fl - re data (k+j);

hadamard (degree, hdata-im);
hadamard~degree,h data-re);
n-0;
dclvl re+=h data-relO]; 1* Save pedestal information. *
dclvl im+=h-data_1mb]);
for (k=0;k<-(seqlen*numpts) ;k+=numpts)

im-data(k+j] = I~data_im(unscram(n]l;
re -datalk+jJ = l~data_relunscramln++J];

1* Compute pedestal corrections for real and imaginary parts. *

pdstalre - (dclvl-re/num-Pts)*rfact - (dclvi im/numJPts)*ifact;

66



pdstal im = (dclvi-re/nurn-pts)*ifact + (dclvi im/numjpts)*rfact;

1* Case 1 is if Coherent averaging is performed. Else, no coherent averaging

is performed. Each segment is output. *

if (nun -coh -avg > 1)

1* Make DC level correction. *

for (k=O;k<sec-len*numpts;k++)

avg refkJ+= (re-data[kJ-pdstal-re);
avg im(k]+= (im-data~k)-pdstal in);

count++;
if (count==num-coh_avg)

count = 0;
for (k=0;k<seq-lon*numypts;k++)

avg re(kJ/=nun-coh-avg;
avg im(kJ/-num-coh_avg;

I'* Compute magnitude and phase and print results. *

magyphase (avg re,avg ir,mag,phase, (num pts*sec~len));
for (j=O; J<num pts*seqjlen; j++)

fprintf(fp2,'1%8.1f %8.If\n',mag~jJ~phasej]);
avg re(j) = 0.0;
avg imu] = 0.0;

/* Case 2. No coherent averaging. Compute magnitude and phase and
print results. '

else

for (k=0;kcseq-len*numnpts;k)++)

re datafk]-= pdstal re;
irn- datafk)-= pdstal-im;

mr-agphase (re-data, in-data, mag,phase, (numj_%ts*sec-len));
for Cj=0; j<num~pts~seq len; j++)

fprintf(fp2,'%8.lf %8.lf\n",mag(j),phase(jJ);

/* Finished close out variables and files. *

fclose(fpl);
fclose(fp2);
free(fc);
free(fs);

67



free (indatal);
free(indata2);
free(im data);
free(redata);
free (mag);
free (phase);
free (avgre);
free(avg im);
free(h data im);
free(hdata re);
free(data_i re);
free (data i_im);

/* NEW is a short function to allocate memory for floating point vectors. */

float *new(size)
int size;
(
float *newdata;

if (( newdata - (float *)malloc(size*sizeof(float)))==NULL)

printf ("Cannot Allocate Storage! \n");
exit (1);

return (newdata);

B. INITIALIZATION PROGRAMS

1. INITHAD

This program prompts for the primitive polynomial initial register load and

allocates memory space to the variables scram and unscram. Returns initial register

load, initial.
/* INITHAD is a program to initialize memory allocation for the scrambling

and unscrambling arrays to be used with Fast Hadamard Transform. It
also returns the initial register load used with the Shift Register
Generator.

Variables:

scram - external array to hold scrambling indices.

unscram - external array to hold unscrambling indices.

initial - initial register load for SRG.

law - polynomial law that defines the SRG structure.

length - length of sequence generated by the input law. Assumes

68



maximal length polynomial.

temp - temporary holding spot for determining sequence length.*/

#include "macrofile.h"
unsignedfinithad()

extern unsigned law;
unsigned initial, temp, length;

printf("\nEnter polynomial law for the desired M-Sequence. Use");
printf("\noctal integer representation only.");
printf("kn(e.g. D3 + D + 1 - 1011 binary -> 13 Octal.)\n");
printf("\n LAW: ");
scanf("%o', &law);
temp - law;
length - 1;
while (temp>>=l)

length<<=1;
length--;
if ((scram = (unsigned *)malloc(length*sizeof(unsigned))) == NULL)

printf("\nCannot Allocate Scram Array!!!!\n");
exit ();

if ((unscram = (unsigned *)malloc(length*sizeof(unsigned))) == NULL)

printf("\nCannot Allocate Unscram Array!!!!\n");
exit (1);

printf("\nEnter the initial register load in Decimal, do not use zero.");
printf("\n\n Initial Load: );
scanf ("%u", 6initial) ;

if (initial - 0)

printf("\nError! Initial load cannot be O!!\n\n");
printf("\nEnter the initial register load in Decimal, do not use zero.");
printf("\n\n Initial Load: ");
scanf ("%u1, &initial) ;

if (initial - 0)

printf("\nError! Aborting.\n\n");
exit (1);

return (initial);

2. FWDHAD

Computes the permutation indices for use with the FHT. Data is transmitted in

the forward direction. Returns the degree of the primitive polynomial.

/* FWD HAD() computes the permutation indices for scrambling and
unscrambling a data vector generated using Maximal Length Sequences.
These indices are used with the Fast Hadamard Transform and is performed
in place. Sequences are assumed to be transmitted in the foward

69



direction.

Variables:

law - Shift Register Generator law to be used.

initial - initial register law.

scram - array of indices for scrambling data.

unscram - restoration indices for use after FHT.

degree - gives the degree of the polynomial law.

temp - temporary holder for computing degree and seq_len.

S_law - law formed from law to implement the S_gen structure.

revlaw - law in the reverse order to implement the Lgen structure.

endbit - maintains end bit for around end feed in S_gen.

Lgen - variable that acts as L generator delay registers.

S gen - variable that acts as S generator delay register.

Reference: The Feedback generators used for forming the foward scrambling
and unscrambling indices are adapted from:

M. Cohn and A Lempel, 'On Fast M-Sequence Transforms',
IEEE Transactions on Information Theory, Jan. 1977. */

unsigned fwdhad(law, initial, scram, unscram)
unsigned law, initial, *scram, *unscram;

unsigned degree,temp,temp2,seq_len,S_law,revlaw;
unsigned endbit, L_gen,Sgen;
int i,j,count;

/* Initialize variables. *1
temp = law;
degree = 0;
S_gen = 0;
rev-law = 0;
seolen = 1;

/* Computes the length of the M-Sequence, and Polynomial Degree. */

while(temp>>=)

seq len <<- 1;
degree++;

/* Reverses law for use with L-gen. */
temp = law;
for (i=0; i<= degree;i++)

rev law - (temp&l) I(rev law<<l);
temp>>-1;

70



/* Set end bit for register end feed for Sgen logic. Set initial load
for Sgen. Set law for use in S-gen logic.*/

end -bit = seq len--;
S-law =-lw>)
end bit 1=;
temp = initial;
for (i=0; i<seqjlen-1; i++)

if (temp&l)
temp -(temp~law) >l;

else
temp >>= 1;

if(i >= seq_,len-degree)

Sgen - Sgenl(temp&l);
Sgen «<=l;

-Sgen I= (initial&l);
1* Load Ltgen to generate-unscrambling indices. *
L gen =(1<<(degree-l));

/* Compute permutations scram and unscram. ~
for (i=0; i<seqjlen; i++)

unscramfi) -gen;
temp2 =0;
temp = S-gen;
for (jO; j<degree; j++)

temp2 «<=I;
temp2 I- (temp~l);
temp >>=;

scramfi] - temp2;
if (L gen&l)

Lgen = (Lgen~revlaw)>>'1;
else

1Jgen >=l;
temp - (Sgen & S law);

1* Count the number of l's for modulus two sum for end feedback to Sgen. /

count=0;
for (j=0; j<degree;j++)

if (temp&l)

count++;
temp =lJ;

else
temp >=l;

if ((count%2) == 0)
S-gen <<- 1;

else
Sgen - (Sgen<<l)Il;

Sgen &- sec~len;

return (degree);

71



3. REVHAD

Computes the permutation indices for use with the FHT. Data is transmitted in

the reverse direction. Returns the degree of the primitive polynomial [Ref. 15].

/* REVHAD() computes the scrambling and unscrambling indices for a
Maximal Length Sequence that is to be processed using a Fast Hadamard
Transform and is performed in place. The sequence is assumed to be
transmitted in the reverse direction.

law - The polynomial law defining the Maximal Length Sequence that is

used.

initial - The initial register load for the shift register generator.

scram - Pointer to the array to contain the scrambling indices,
to be used with the transformed array. The transform
is not done in place.

unscram - Pointer to the array to contain the unscrambling indices.

The transform is not done in place.

degree - The degree of the law is returned.

Reference: This procedure was adapted from the article "On Fast
M-Sequence Transforms", by Martin Cohn and Abraham Lempel,
IEEE Transactions on Information Theory, Jan. 1977.

The program was modified from code provided by Kirk

Metzger with permission.

#include 'macrofile.h"

unsigned rev had(law,initial, scram, unscram)
unsigned int law, initial, *scram, *unscram;

/* temp Scratch variable for use in finding degree etc.
end bit Bit is set corresponding to highest bit in law. (i.e. the

end register n).
revinitial Initial register load for reverse generation.
seqlen Length of sequence based on law.
index Loop counter.
sscontents Shift register contents for scram array.
mscontents M sequence register contents for unscram array.*/

unsigned int degree, temp, endbit, rev initial, seqlen, index;
register unsigned sscontents, ms contents;

/* Initialize variables. */
temp - law;
sealen - 1;
revinitial = 0;
degree - 0;

/* Find sequence length and degree of polynomial. -/
while (temp>>-l)

72



seqLjen<<=l;
degree++;

/* set end-bit */
end-bit = seq_len-->>l;

/* find reverse generator initial load */
for(index = 0; index- < degree; index++)

rev initial = (revinitial<<l) I(initial&l);initial>>-I;

/* -generate scram and unscram values using law, end-bit and values of
ss_contents and ms_contents. *1

ms_-contents = 1;
ss contents = revinitial;
for -(index =0; index<seqlen; index++)

(
*scram++ = ss contents;
*unscram++ = ms_contents;

temp= ss_contents&law;
sscontents>>=l;
do ( if (temp&l)

ss contents^=end bit;)
while (temp>>=l);
if (ms_contents&l)

ms_contents = (mscontents^law)>>l;
else

ns_contents>>=l;

)return (degree);

4. GETFLTCO.

Retrieves the filter coefficients to be used used in initializing the filtering

programs. Two tenth order and one fifth order filters are used in this program.

/* GET FLT COEF retrieves the filter coefficients from the user specified
file using a columnar format. The first column is the b coefficients
and the second is the a coefficients. The first 11 rows are the highpass
coefficients used for the upper end of the passband filter and the next
eleven are the lowpass coefficients for the lower end of the passband.
the final six rows are for the low pass filter used after demodulation.

The coefficients file may be created by any program desirea by the user
but must be in the appropriate format. However, a MATLAB program,
set filter.m, does this automatically. Set filter.m uses a BLTTERWORTH
filter (10th order) for the passband and a CHEBYCHEV filter for the
lowpass filter (5th order).

include <stdio.h>
include <math.h>

73



void get flt eoef (hia,hib,lowa,lowb,lowl a,lowl b)
float *hi a,*hi b,*Iowa, *low b,*lowl_a,*iowl b;

int i;
FILE *fp;
char filterfile(21);

printf("\nEnter the filename with the desired filter coefficients.");
printf("(20 Characters Max)\n");
printf("\n Filename: ");
scai- f ("%s", filter file) ;

if((fp - fopen(filterfile,"r"))-= -NULL)

printf("\nUnable to open file. Ab~rting!\n");
exit (l);

for (i=0;i<-l0;i++)
fscanf(fp,"%f %f\n",&hi-b(ij,&hi_aji]);

for (i=O;i<=10;i++)
fscanf(fp,"%f %f\n",&iowl b(i,&lowl_a[i]);

for (i=O; i<=5; i++)
fscanf(fp,"%f %f\n",&low_b(i],&low_a[i]);

fclose(fp);

C. DEMODULATION AND FILTERING

1. DEMODULATE

This function performs demodulation of the input carrier signal as well as the

necessary frequency shift when compensating for Doppler. No assumption,, are made

about the sampling frequency within this program. It may be set and cleared as desired.

The time index n is remembered so the repetitive calls may be made.

/* DEMODULATE performs complex demodulation of a sinusoidal carrier for
digital signal processing. Given an input signal, sampling frequency,
and carrier frequency two outputs are produced, one Lor the real part
and one for the imaginary part. Tne user determines the number of points
to be processed in each call to the program.

sinout - Input signal and output as imaginary part of the demodulated
signal. Input data is overwritten and lost forever.
On initialization iin out is set to the desired carrier
frequency. (floating type pointer.)

cos out - Output signal as real part of the demodulated signal.
On Initialization cos out is set to the desired sample frequency.
(floating type pointer.)

doppD bin - Denotes the doppler frequency shift in the sampling frequency
to be used when doppler processing is used, and is determined
externally. When no doppler processing is to be used it must

74



be set to 0.

n - counter that maintains time increment for digit processing (static).

theta - digital frequency (static).

flag - Set when system has been initialized (static). Cleared when
N has been set to zero.

N - the number of data points to be processed. Whenever set to zero
the system must be reset.

Reset: call with all arguments, N=0.

Set :First call with sin out=fc, cos_out=fs, N is don't care.

Operation : Call with sin out as input data, returns sinout as imaginary
part and cos-out as real part. N= number of data points to
process and is the same length as the input data.

include <math.h>
#define PI 3.1415926536

void demodulate(sinout,cosout,doppbin,N)
float *sinout, *cos_out, doppbin;
int N;

int i;
static int flag, n;
static double theta;

if (flag =- 0)
* (

flag = 1;
theta = 2 * PI *(*sin_out/(*cosout));
n = 0;
return;

else if( N == 0)

flag = 0;
Lheta = 0.0;
n = 0;
return;

else
f
for(i=O; i<N; i++)

*cos out++ - *sin out * cos(n*(theta + dopp bin));
*sin_out++ - *sin-out * sin(n*(theta + dopp bin));
n++;

return;

75



2. HIGHPASS

This program performs a highpass filtering of input data. It is assumed to be

used in conjunction with a lowpass filter to form a bandpass filter. Processing in this

manner simplifies the processing by avoiding complex operations. It maintains its state

on subsequent calls and can be initialized with any type filter up to order 20. It may

also be cleared and reset. (Note: All filtering programs are generic and may be adapted

for any filtering application, lowpass, highpass, bandpass and bandstop. The names

were chosen to distinguish them from each other within SEQREM.)

/* HIGHPASS is a filtering program that operates using difference
equations. It is intended that the filter be hIR but this is not
required. (i.e. H(z) = B(z)/A(z) is a polynomial where the Bn's and
An's specify the coefficients of the difference equation, which must
of the same length. If they are not of the same order zeros must be
appended.)

Initialization: The first call sets the desired filter coefficients
to be used throughout. No filtering is performed at this sta e.
In this case in num specifies numerator and out-den specifies the
denominator coefficients. M is the number of coefficients, ordered
highest to lowest. (NOTE: outdenfO) is assumed to be one and is not
actually set during the initialization.)

Example 1: H(z) = i/z; => M = 2, innum[0) = 0, in_num[l] = 1,
out_den[0] = 1, outden(l) = 0

Example 2: H(z) = (0.5z^2 + l)/(z^2 + 0.5z + 0.6) => M = 3,
innum[0] = 0.5, in num[l = 0, in-num[2 = 1,
out_den(O] = 1, outdenil) = 0.5, outden[2] = 0.6

Filtering: Subsequent calls perform the desired filtering. In this
case innum is the input data, out den is the output data from the
filter, M specifies the number of data points being processed, and
may be of any length as long as sufficient space has been allocated
to the input pointer and the output pointer.

Clearing: To clear and reinitialize the filter after initializing once,
simply set M to 0 and call again as explained above.

Data Types: Inputs are pointers to array's of float, M is integer.

Filter Order: Maximum order is 25.

Variables:

in num - pointer to input numerater coefficients, or to
input data segment.

76



inden - pointer to input denominator coefficients, or to
output data segment. (NOTE: input and output segments
may be the same, but input values will be overwritten.)

A - Denominator filter coefficients (static).

B - Numerator filter coefficients (static).

Y - Output storage buffer used in recursion (static).

X - Input storage buffer used in recursion (static).

N - Remembers filter order for computing output (static).

M - Filter order during initialization, and number of points
to be processed on subsequent calls.

flag - maintains initialization status (static).

Other Filters: LOWPASSI(), LOWPASS2(), and LOWPASS3() are coded
identically to this program and work in the same
manner. */

#include <math.h>
idefine MAXORD 25
#define MAX 24

void hipass(innum,out den,M)
float *in num, *outden;
int M;

static float A(MAXORD, BIMAXORD], Y(MAXORD], X(MAXORD];
static int flag, N;
int i,j;

/* Loop clears output ond coefficient values for reuse in new filter.*/
if (M==O)

for (i=O;i<MAXORD;i++)

Afi] = 0;
B[i] = 0;
Yi] = 0;
Xi] = 0;

flag = 0;
return;

/* Loop sets coefficients of the desired filter on first entry if flag=O /
/* Note that A(0] is assumed 1, since it corresponds to the desired output*/
else if (flag == 0)

B(01 -- innumbO};
for (i=l; i<M;i++)

Bli] = in num~i);
Ali] = outden i];

flag - 1;
N -M;

77



return;

/* Otherwise perform filtering operations. Output stored in out den[). */
else

for(j=0; j<M; j++)

X[MAX] = in num[j);
/* Start filteriing operation. */

Y[MAX) = B[0] * X(MAX];
for (i=l;i<N;i++)
Y(MAX] = Y(MAX) + B(ij*X[MAX-iJ - A(i)*Y[MAX-iJ;
outdenij) - Y(MAX];

/* Perform time shift of data points stored in filter. */
for (i=O;i<MAX;i++)

Yi] = Y[i+lJ;
X[i) X[i+lj;

return;

3. LOWPASSI

This program performs a lowpass filtering of input data. It operates exactly

the same as HIGHPASS.

/* LOWPASS1 is a filtering program that operates using difference
equations. It is intended that the filter be hIR but this is not
required. (i.e. H(z) - B(z)/A(z) is a polynomial where tne Bn's and
An's specify the coefficients of the difference -quation, which must
of the same length. If they are not of the same order zeros must be
appended.)

Initialization: The first call sets the desired filter coefficients
to be used throughout. No filtering is performed at this stage.
In this case in num specifies numerator and out den specifies the
denominator coefficients. M is the number of coefficients, ordered
highest to lowest. (NOTE: out den(0) is assumed to be one and is not
actually set during the initialization.)

Example 1: H(z) - i/z; => M = 2, in_numlO) = 0, in_num(l) 1,
outden(O) = 1, outden[l) = 0

Example 2: (z) = (0.5z^2 + l)/(z-2 + 0.5z + 0.6) => M = 3,
in-num(O) = 0.5, in_numl) - 0, innum[2) = 1,
out den[O) = 1, out denfl) = 0.5, out den(2J = 0.6

Filtering: Subsequent calls perform the desired filtering. In this
case in num is the input data, outden is the output data from the
filter, M specifies the number of data points being processed, and
may be of any length as long as sufficient space has been allocated
to the input pointer ano the output pointer.

78



Clearing: To clear and reinitialize the filter after initializing once,
simply set M-to 0 and call again as explained above.

Data Types: Inputs are pointers to array's of float, M is integer.

Filter Order: Maximum order is 25.

Variables:

in num - pointer to input numerater coefficients, or to
input -data segment.

inden - pointer to input denominator coefficients, or to
output data segment. (NOTE: input and output segments
may be the same, but input values will be overwritten.)

A - Denominator filter coefficients (static).

B - Numerator filter coefficients (static).

Y - Output storage buffer used in recursion (static).

X - Input storage buffer used in recursion (static).

N - Remembers filter order for computing output (static).

M - Filter order during initialization, and number of points
to be processed on subsequent calls.

flag - maintains initialization status (static).

Other Filters: HIGHPASSO, LOWPASS2(), and LOWPASS3() are coded
identically to this program and work in the same
manner.

#include <math.h>
#define MAXORD 25
#define MAX 24

void lowpassl(in_num,outden,M)
float *in num, *outden;
int M;

static float A(MAXORDJ, B[MAXORD), Y[MAXORDJ, XIMAXORD);
static int flag, N;
int i,j;

/* Loop clears output and coefficient values for reuse in new filter.*/
if (M==0)

for (i0;i<MAXORD;i+ )

A[i) = 0;
B[i)= 0;
Y[iJ = 0;
Xli] = 0;

flag = 0;
return;

/* Loop sets coefficients of the desired filter on first entry if flag=O */

79



/* Note that A[0] is assumed 1, since it corresponds to the desired output*/
else if (flag == 0)

B[0] = in num[0J;
for (i=l; i<M;i++)

B[i] = innum(i];
Ai] = out den[i];

flag = 1;
N = M;
return;

/* Otherwise perform filtering operations. Output stored in outden[]. */
else

for(j=0; J<M; J++)

X[MAX) = innum[J];
/* Start filteriing operation. */

YJMAX] = B(0] * X[MAX];
for (i=l;i<N;i++)
Y[MAX] - Y[MAXJ + B[i]*X[MAX-i) - A[i)*Y(MAX-i];
outden(j] = Y[MAXJ;

/* Perform time shift of data points stored in filter. */
for (i=O;i<MAX;i++)

Y~i) = Y[i+l];
XMi - Xli+l];
Xl)

return;

4. LOWPASS2

This program performs a lowpass filtering of input data. It operates exactly

the same as HIGIPASS.

/* LOWPASS2 is a filtering program that operates using difference
equations. It is intended that the filter be IIR but this is not
required. (i.e. H(z) = B(z)/A(z) is a polynomial where the Bn's and
An's specify the coefficients of the difference equation, which must
of the same length. If they are not of the same order zeros must be
appended.)

Initialization: The first call sets the desired filter coefficients
to be used throughout. No filtering is performed at this stage.
In this case in num specifies numerator and out den specifies the
denominator coefficients. M is the number of coefficients, ordered
highest to lowest. (NOTE: out_den(0) is assumed to be one and is not
actually set during the initialization.)

Example 1: H(z) = I/z; => M = 2, in-numO0 = 0, in_ihumjlj = 1,
outdenlO) - 1, out den~l) = 0

80



Example 2: H(z) = (0.5z^2 + l)/(z^2 + 0.5z + 0.6) -> M = 3,
innum[0] = 0.5, in_numil] = 0, in-num[2] - 1,
out den[0] = 1, outden l] - 0.5, outden[2) = 0.6

Filtering: Subsequent calls perform the desired filtering. In this
case in num is the input data, outden is the output data from the
filter, M specifies the number of data points being processed, and
may be of any length as long as sufficient space has been allocated
to the input pointer and the output pointer.

Clearing: To clear and reinitialize the filter after initializing once,
simply set M to 0 and call again as explained above.

Data Types: Inputs are pointers to array's of float, M is integer.

Filter Order: Maximum order is 25.

Variables:

innum - pointer to input numerater coefficients, or to
input data segment.

in-den - pointer to input denominator coefficients, or to
output data segment. (NOTE: input and output segments
may be the same, but input values will be overwritten.)

A - Denominator filter coefficients (static).

B - Numerator filter coefficients (static).

Y - Output storage buffer used in recursion (static).

X - Input storage buffer used in recursion (static).

N - Remembers filter order for computing output (static).

M - 7 .lter order during initialization, and number of points
to be processed on subsequent calls.

flag - maintains initialization status (static).

Other Filters: HIGHPASSO, LOWPASSl(, and LOWPASS3() are coded
identically to this program and work in the same
manner.

#include <math.h>
idefine MAXORD 25
#define MAX 24

void lowpass2(in_num,out den,M)
float *innum, *out_den;
int M;

static float A[MAXORD), B(MAXORD), Y(MAXORD, XfMAXORD);
static int flag, N;
int i,j;

/* Loop clears output and coefficient values for reuse in new filter.*/
if (M=-0)

81



for (i=;i<MAXORD;i++)

Ai] = 0;
Bli] = 0;
Yti] 0;
X[i 0;

flag - 0;
return;

/* Loop sets coefficients of the desired filter on first entry if flag=O */
/* Note that A[0j is assumed 1, since it corresponds to the desired output*/
else if (flag == 0)

B[01 = innum[O;
for (i=l; i<M;i++)

B[i] = innumli];
AMi] = outdenfi];

flag =;
N = M;
return;

/* Otherwise perform filtering operations. Output stored in outden[]. */
else

for(j=0; j<M; j++)

X[MAXI = inInum[J);
/* Start filteriing operation. */

Y[MAX] = B[0] * X[MAX];
for (i=l;i<N;i++)
Y[MAX] = Y[MAXJ + B(i]*X[MAX-i] - A(iI*Y(MAX-iJ;
out-denfj] = Y[MAX];

/* Perform time shift of data points stored in filter. */
for (i=O;i<MAX;i++)

Yi] = Y[i+l];
X(i] = Xfi+l];

return;

)

5. LOWPASS3

This program performs a lowpass filtering of input data. It operates exactly

the same as HIGHPASS.

/* LOWPASS3 is a filtering program that operates using difference
equations. It is intended that the filter be IIR but this is not
required. (i.e. H(z) B(z)/A(z) is a polynomial where the Bn's and
An's specily the coefficients of the difference equation, which must
of the same length. If they are not of the same order zeros must be
appended.)

82



Initialization: The first call sets the desired filter coefficients
to be used throughout. No filtering is performed at this stage.
In this case innum specifies numerator and out den specifies the
denominator coefficients. M is the number of coefficients, ordered
highest to lowest. (NOTE: outden[O) is assumed to be one and is not
actually set during the initialization.)

Example 1: H(z) = l/z; -> M - 2, innum(O) = 0, innum(l) - 1,
outden(O) = 1, out-denhl] = 0

Example 2: H(z) - (0.5z^2 + l)/(z^2 + 0.5z + 0.6) => M = 3,
in num[O] = 0.5, innum(l) = 0, innum[2) = 1,
outden[0] = 1, outden[1) = 0.5, outden(2] = 0.6

Filtering: Subsequent calls perform the desired filtering. In this
case in num is the input data, out den is the output data from the
filter, M specifies the number of data points being processed, and
may be of any length as long as sufficient space has been allocated
to the input pointer and the output pointer.

Clearing: To clear and reinitialize the filter after initializing once,
simply set M to 0 and call again as explained above.

Data Types: Inputs are pointers to array's of float, M is integer.

Filter Order: Maximum order is 25.

Variables:

in num - pointer to input numerater coefficients, or to
input data segment.

inden - pointer to input denominator coefficients, or to
output data segment. (NOTE: input and output segments
may be the same, but input values will be overwritten.)

A - Denominator filter coefficients (static).

B - Numerator filter coefficients (static).

Y - Output storage buffer used in recursion (static).

X - Input storage buffer used in recursion (static).

N - Remembers filter order for computing output (static).

M - Filter order during initialization, and number of points
to be processed on subsequent calls.

flag - maintains initialization status (static).

Other Filters: HIGHPASSO, LOWPASS1), and LOWPASS2() are coded
identically to this program and work in the same
manner.

finclude <math.h>
Idefine 14AXORD 25
idefine VAX 24

83



void lowpass3(innum,out-den,M)
float *innum, *outden;
int M;

static float A(MAXORD], B[MAXORD], Y(MAXORD), X[MAXORD);
static int flag, N;
int i,j;

/* Loop clears output and coefficient values for reuse in new filter.*/
if (M==0)

for (i=O;i<MAXORD;i++)

A] = 0;
Bli) = 0;
Y[i) = 0;
Xi) = 0;

flag = 0;
return;

/* Loop sets coefficients of the desired filter on first entry if flag=O /
/* Note that A(0] is assumed 1, since it corresponds to the desired output*/
else if (flag == 0)

B[O] = innumO];
for Ci=l; i<M;i++)

BMi = innumfi];

AMi = out denti];

flag = 1;
N = M;
return;
)

P Otherwise perform filtering operations. Output stored in outden[]. */
else

(
for(j=0; j<M; j++)

X(MAX] = innumbJl;
/* Start filteriing operation. */

Y[MAX] = B(01 * X[MAX);
for (i=l;i<N;i++)
Y[MAX = Y[MAX + Bfi]*X[VAX-i] - A(i]*Y(MAX-i];
outden!j] - YWMAXJ;

/* Perform time shift of data points stored in filter. */
for (i=0;i<MAX;i++)

Y[i] = Yli+l);
Xli] = Xfi+l);

return;

84



D. FAST HADAMARD TRANSFORM (FHT)

1. HADAMARD

This function performs the FHT of an input data vector in place. A power of

two length is required. Computation is identical to the FFT butterfly process with the

complex muhiplies set to one.

/* HADAMARD performs the Fast Hadamard Transform (FHT) on the input data.
The transform is performed in place and assumes no interleaving.
Interleaving must be performed externally.

The FHT performs the same operations as the FFT with the complex
*nultiplies set to + or - 1. The input and output data vector
must be first ordered and then reordered after exit.

Variables:

degree - Provides the degree of the polynomial being worked with
which gives the length of the M-Sequence.

din - Pointer to the input data to be transformed. On exit it holds
the transformed data.

m,n - counters.

itop,ispace,iwidth,ibot - common place holders used performing
the butterfly operations of the FFT. */

#include <math.h>

void hadamard(degree,din)
float *din;
int degree;
I
int m,n, itop, ispace,iwidth,ibot;
float temp;
unsigned int one, size;

one = 1;
size = (one<<degree);
for ( m=l; m<=degree;m++)

ispace = (one<<m);

iwidth = (one<<(m-l));
for (n-O;n<iwidth;n++)

for( itop-n;itop<-(size-2);itop+=ispace)

ibot = itop + iwidth;
temp - dinlibot);
din(ibotj = dinlitop) - temp;
dintitop] - din(itop] + temp;

85



E. MAGNITUDE AND PHASE

1. MAGPHASE

This function simply computes the magnitude and phase of the demodulates

after either coherent averaging or directly after the FI-T and the appropriate

permutations.

/* MAGPHASE computes the magnitude and phase of the input data, and

returns the results in the pointers mag and phase.

realpart - Pointer for the real part of the input data of length N.

impart - Pointer for the imaginary part of the input data of length N.

mag - Pointer to data segment to hold the magnitude of the data and
is also of length N.

phase - Pointer for data segment to hold the phase of the data and is
also of length N. (Degrees)

N - Integer indicating the size of the input data segment. *1

include <math.h>
#define PI 3.1415927

void magphase(realpart,impart,mag,phase,N)
float *realpart, *impart, *mag, *phase;
int N;

int i;

for (i=0;i<N;i++)

mag[i) = sqrt(realpartli] * realpart~i + impartli] * impart(i]);
if (realpartli) - 0.0)

p.ase[i) - 0.0;

else
phase[i) - atan(impartli) I realpartri)) (180.0/PI);

86



F. UJTILITY PROGRAMS

1. SETFILTER

This is-a handy MATLAB program fort fidng the coefficients for a ten th

order -Butterworth--bandpass -filter and a fifth order Chebychev lowpass filter, which

stores -them in a file formatted for use with GET_FLT_COEF. Sampling frequency

and cutoff frequencies are prompted -from the -user.

% function set-filter Set-filter computes the filter coefficients for

% the bandpass filter (high and lowpass filters)
% and for the lowpass filter used in the sequence

% removal program. The bandpass region uses a
% ~10th order BUTTERWORTH I lter and the bywpass region

uses a 5th order MIMBCPEV fiter wi'th the results
stored in the user-specified file in the format
required by the GET FLT CQEF -function. The user is
queried for cutoff frequencies and samo.1irg
frequency.

* function set filter

fprintf('\n WARNING!:!!!! \n');
fprintf('\n F-iic to hold results should be non-existant prior to runiiiny9n);

*fprintf C' this routine because the results are appended to any pre-oxisting\n,);
fprintf' data.\nl);
filename - inputC'Enter filename to store results: 1,151);
fs - input('Enter the Sarpling frequency to be used: 1);
fc - innut(VEnter the Cut Of f Frequency for the Low Pass Filter: 1);J
fprintf'('\n Enter the Cut Off Frequencies for the BP filter\n');
fl - input(VLower: 1);
fh =inputCJpper: '1;
f= fsI2;

if (fl > fs)I~fc, > fs)I(fh > fs)

errorC'Invalid Frequencies. Cutoft Freqvencies Must be <= FsI21);
end
% Finds the Coefficients for the High Pass Filter (BP low end)
wn -fl/fs;

Jbl,al) - butr,,r(10,wn,'high');

% Finds the Coefficients for the Low Pass Filter (BP hi end)
wn - fh/fs;
[b2,a2) - butter(lO,wn);
% Finds the Coefficients for the Low Pass Filter.

* wn - fc/fs;
fb3,a3J - chebylCS,0.5,wn);
for 1=1:11

fprintf~filoname, %e %e\n1,bl Ci),al Ci));
* end

for i-1:l1

87



fprintf (filename, '%e %e\n',b2(i),a2(i));
end
for 1-1:6

fprintf (filename, '%e -%e\n',b3(i),a3(i));
end

2. APLOT

This -program was used to generate the plots in Appendix A with NCAR

graphics. It is data specific -because -of the nature of NCAR -graphics when used for

surface plotting routines.

C This is a program to plot the results of the program SEQ_REM
C in successive plots for each doppler searched.

INTEGER X,Y
PARAMETER (X=510, Y=30)

CHARACTER*32 IFILE, TEMP,SEOLEN
CHARACTER*20 DOPPLER
INTEGER 1,J, LENGTH,ISZ
REAL MAG (X, Y) ,PH (X,Y) ,XPOS, YPOS, ZPOS
REAL WORk (2*X*Y+X+Y)
REAL TS, ANGH, ANGV, ZMAX
COMMON /SRFIPl/ IFR, ISTP, IROTS, IDRX, IDRY, IDRZ, IUPPER, ISKIRT,
1 NCLA,THETA,HSKIRT,CHI,CLO,CINC, ISPVAL

35 FORMAT(A)
40 FORMAT (A20)

IFR - 0
IDRZ = 1
WRITE(*,*)ITHIS PLOTS THE RESULTS FROM SEQREM PROGRAM'
WRITE(*,*)-'ENTER THE INPUT FILE:
READ (*, 40) IFILE
OPEN (33, FILE=IFILE, STATUS='OLD')

ANGH = -60.
ANGV = 30.
ZMAX =0.
CALL GOPKSCS,ISZ)
CALL GOPWK(l,2,1)
CALL GACWK(l)
READ (33, 35) TEMP

s0 READ (INIT=33, FMT=*) DOPPLER
READ (UNIT=33, FMT=*) SEQLEN
READ (UNIT=33, FMT=*) LENGTH, TS
3=

60 j=3+1
DO 80 I=1,LENGTH

READ(UNIT=33,FMT-*,ERR=l00,END=200)MAG(I,J),PH(I,J)
IF (MAG(I,J) .GT. ZMAX) THEN

ZMAX = MAG(I,J)
ENDIF

80 CONTINUE

88



GO TO 60

100 3 = -1
CALL GSELNT(0)
CALL GSTXAL(2,3)
CALL GSCHH(.02)
CALL GTX(0.5,O.9,'ARRIVAL TIME PLOT 1)

CALL GSTXAL(2,3)
CALL GTX (0.5,0.85, DOPPLER)
CALL EZSRFC (MAG, LENGTH,3, ANGH, ANGV, WORK)

XPOS = 0.
YPOS = 0.25*ZMAX
ZPOS= 0.0
CALL PWRZS(XPOS,YPOS,ZPOS,SEQLEN,31,25,1,3,O)
CALL FRAME
ZMAX =0.
GO TO 50

200 J3=J-1
CALL GSELNT(0)
CALL GSTXAL(2,3)
CALL GSCHH(.02)
CALL GTX(0.5,0.9, SARRIVAL TIME PLOT -')

CALL GSTXAL(2,3)
CALL GTX(0.5,0.85,DOPPLER)
CALL EZSRFC (MAG, LENGTH,3, ANGH, ANGV, WORK)

XPOS -0.
YPOS = -O.25*ZMAX

ZPOS =0.0
CALL PWRZS(XPOS,YPOS,ZPOS,SEOLEN,31,25,1,3,0)
CALL FRAME
CLOSE (33)

* CALL GDAWKC1)
CALL GCLWK(1)
CALL GCLKS
WRITE(*, *) 'FINISHED'
STOP
END

89



3. DOPPLOT

This program was used to generate the iarrival time plot, Figure 3.1, with

NCAR graphics. It is data specific because of the nature of NCAR graphics when used

for surface plotting routines.

C This is a program to plot the results of the program SEQREM
C making a doppler-versus time plot for each doppler search.

INTEGER X,Y
PARAMETER (X=255, Y=23)

CHARACTER*32 IFILE, TEMP. SEQLEN
CHARACTER*20 DOPPLER
INTEGER 1,3, LENGTH, ISZ
REAL MAG(X,Y) ,PH(X,Y) ,XPOS,YPOS,ZPOS,TEMPI(X,Y) ,TEMP2(X,Y)
REAL WORK(2*X*Y+X+Y)
REAL TS,ANGH,ANGV, ZMAX
COMMON ISRFIPlI IFR, ISTP, IROTS, IDRX, IDRY, IDRZ, IUPPER, ISKIRT,
I. NCLA, THETA, HSKIRT, CIII, CLO, CINC, ISP VAL

35 FORMAT(A)
40 FORMAT (A20)

IFR =0

IDRZ =1

WRITE(*,*)ITHIS PLOTS THE RESULTS FROM SEOREM PROGRAM IN DOP'PLER'
WRITE(*,*) 'VS.TIME FORMAT'
VIRITE(",*) 'ENTER THE INPUT FILE:
READ (*, 40) IFILE
OPEN(33,FILE-IFILE,STATUS='OLD')
ANGH =-60.
ANGV = 30.
ZMAX = 0.
CALL GOPKS(6,ISZ)
CALL GOPWK(1,2,1)
CALL G;ACWK(1)
READ (33, 35) TEMP
j -1

50 READ (UNIT=33, FMT=*) DOPPLER
READ (UNIT=33, FMT=*) SE0LEN
READ (UNIT-33, FMT-*) LENGTH, TS
K- 1
DO 53 I=1, LENGTH

READ(33,*)TEMP1(I,K) ,TEMP2(I,K)
53 CONTINUE
Go0 3- 3+

DO 80 I=1,LENGTH
READ(UNIT=33,FMT-*,ERR=50,END=200)MAG(I,J) ,PH(I,J) -

IF (MAG(I,J) .GT. ZMAX) THEN
ZMAX - MAG(I,J)

ENDIF
80 CONTINUE
82 CONTINUE

90



DO 85 I-i, LENGTH
READ(UNIT=33, FMT=*,ERR=50,END=200)TEMPI(I,K),TEMP2(I,K)

85 CONTINUE
GO TO 82

200 J = J-1
CALL GSELNT(0)
CALL GSTXAL(2,3)
CALL GSCHH(.02)
CALL GTX(O.5,0.9,'ARRIVAL TIME VS DOPPLER')
CALL GSTXAL(2,3)
CALL GTX(O.5,0.85,'-5 TO 5 KNOTS DOPPLER')
CALL EZSRFC(MAG, LENGTH 3, ANGH, ANGV, WORK)
XPOS - 0.
YPOS - -0.25*ZMAX
ZPOS - 0.0
CALL PWRZS(XPOS,YPOS,ZPOS,'ARRIVAL TIME 22.36 SEC.',31,25,1,3,O)
CALL FRAME
CLOSE(33)
CALL GDAWK(1)
CALL GCLWK(1)
CALL GCLKS
WRITE(*,*)'FINISHED'
STOP
END

4. MGEN

MGEN generates a file with a m-sequence in the forward direction in column

-form, given a primitive polynomial. The sequence is in (1,-i) form. A second file is

also created, which holds one period of the register states. This can be useful for

debugging and as an aid for understanding m-sequences.

/* This is a generator routine to generate the output from the least
significant register in a M-Sequence shifter register generator.
Output is in the form of -1 and 1 where the mapping is (-1,1) ->
(1,0). Register states are also stored to a specified file in decimal
form.

Input: law = the polynomial law specifying the M-Sequence to be
generated.

initial - the initial load placed in the Shift Registers.

Output: output is a column format of -1 and l's in floating format
form for ease of use. output 2 is a column of numbers in decimal

representing the register states over one period.

Initiation: use 'MGEN'

*/

include <malloc.h>
include <stdio.h>
include <math.h>

91



main(0

f loat *mout;
unsigned int temp. initial, law, seq len;
nt i;

char filename (20];
FILE *fpl,-*fp2;

printfQ'\nEnter the Polynomial Law in Octal Form: 11);
scanf (1%o1, &iaw);
printf("\nEnter the Initial Register Load in Octal(Not Zero!): 11);
scanf ("%o11, &initial);
if (initial==0)

printf("\nO is Invalid Register Load. Aborting!\n");
exit (1);

temp = law;
seq len = 1;
while (temp>>=l)

seq-len<<=l;
seqjlen--;
if ((mout = (float *)malloc(seq-len*sizeof(mout)))==NULL)

printfC'\nCannot Allocate-Memory to Output Variable\n");
exit (1)

printf("\nEnter file to store M-sequence. (20 Characters max.");
scanf ('%s", filename);
fpl= fopen (filename,11w"1);
printf("\nEnter file to store register states. (20 Characters max.");
scanf-("%s", filename);
fp2- fopen (filename,o"w"l);
for (i=O;i<seclen;i++)

fprin~tf (fp2, 19%u\n", initial);
if (initial&l)

mout(i] = -1.0;
initial = (initial'law) 1l;

else

mouttil - 1.0;
initial >=l;

fclose (fp2);
for (i=0; i<seqjlen; i++)

fprintf (fpl, "%f\n", 'mout++);
fclose(fpl);

92



5. MAKEFILE

This is a file which makes compiling and linking of C programs easier on

UNIX based systems. Files in the list are compiled, if not already, and are linked

automatically with the MAKE command. The executable code is stored in the file

following the -o flag, and -lm includes the necessary library routines.

#makefile for thesis work.

OBJECTS = seqrem.o rev had.o init had.o fwdhad.o get_flt_coef.o low filterl.o low filter2.o
low filter3.o hi filter.o demod.o hadamard.o mag_phase.o

SOURCES - seqrem.c set had.c init had.c fwdhad.c get_flt coef.c lowfilteri.c lo% ,ilter2.c
low filter3.c hifilter.c demod.c hadamard.c mag_phase.c

LIBS = -!m

CFLAGS = -O

seqrem: $ (OBJECTS)

cc $(CFLAGS) $(OBJECTS) -o seqrem $(LIBS)

$(OBJECTS): macrofile.h

6. EXAMPLE FILTER COEFFICIENT FILE

This shows the structure of the format used to store the filter coefficients used

in the various filtering programs. The numerator coefficients constitute the first

column and the denominator the second. The first eleven rows are for the first tenth

order filter, the next the second, and finally the last six make up the fifth order lowpass

filter.

93



6.127443e-03 1.000000e+O0
-6.127443e-02 -9.960099e-01
2.757350e-o1 1.759559e00
-7.352932e-01 -1.112098e+00
1.286763e+00 8.747430e-01
-1.544116e+00 -3.474470e-01
1.286763e+00 1.441634e-01
-7.352932e-01 -3.307116e-02
2.757350e-01 6.691890e-03
-6.127443e-02 -6.798897e-04
6.127443e-03 3.914710e-05
6.127443e-03 1.000000e+O0
6.127443e-02 9.960099e-01
2.757350e-o1 1.759559e+00
7.352932e-01 1.112098e+00
1.286763e+00 8.747430e-o1
1.544116e+00 3.474470e-01

1.286763e+00 1.441634e-01
7.352932e-01 3.307116e-02
2.757350e-01 6.691890e-03
6.127443e-02 6.798897e-04
6.127443e-03 3.9±4710e-05
1.438164e-05 1.000000e+O0

7.190822e-05 -4.515326e400
1.438164e-04 8.278174e+oo
1.438164e-04 -7.695624e+oo
7.190822e-05 3.625292e+00
1.438164e-05 -6.920557e-01

94



References

1. Kernighan, Brian W. and Ritchie, Dennis M., The C Programing
Language, Prentice-Hall, 1978.

2. Munk, W. and Wunsch, C., "Ocean Acoustic Tomography: A Scheme

for Large Scale Monitoring," Deep-Sea Research, v. 26A, pp. 123 - 161,
1979.

3. Clare, F., Kennison, D., and-Lackman, B., NCAR Graphics Users Guide,
National Center for Atmospheric Research, 1987.

4. Chiu, C.S. and Ehert, L., personal communication, August 1990.

5. Birdsall, Theodore G., letter dated 23 April 1990, "The Heard Island
Experiment."

6. Burdic, William S., Underwater Acoustic System Analysis, pp. 17 - 154,
Prentice-Hall, 1984.

7. Clay, Clarence S. and Medwin, Herman, Acoustical Oceanography, pp. 29
- 136, John Wiley & Sons, 1977.

8. Kinsler, L.E., and others, Fundamentals of Acoustics, 3rd ed., pp. 117 - 120,

John Wiley & Sons, 1982.

9. Dees, Robert C., Signal Processing and Preliminary Results in the 1988

Monterey Bay Tomography Experiment, MS Thesis, Naval Postgraduate
School, Monterey, CA, June 1989.

10. Ziemer, Rodger E. and Peterson, Rodger L., Digital Communications and

Spread Spectrum Systems, pp. 365-415, Macmillan Publishing Company,
1985.

95



11. Birdsall, T.G. and Metzger, K., "M-Sequence Signal Tutorial", Naval

Oceanographic Office Presentation, EECS Dept., University of Michigan,
April, 1988.

12. Birdsall, Ted, letter dated 27 May 1987, " My Introduction to Hadamard
Processes for M-Sequences."

13. Birdsall, T.G., Heitmeyer, R.M., Metzger, K., "Modulation By Linear-

Maximal Shift Register Sequences: Amplitude, Biphase and
Complement-Phase Modulation", Cooley Electronics Laboratory, EECS
Dept., University of Michigan, December 1987.

14. Spindel, Robert C., "Signal Processing in Ocean Tomography," Adaptive
Methods in Underwater Acoustics, ed. H.G. Urban, pp. 687-710, D. Reidel
Publishing Company, 1985.

15. Metzger, K., "Memo to M-Sequence Users on Existence of a Fast
Algorithm for Sequence Removal," June 8, 1987.

16. Cohn, Martin and Lempel, Abraham, "On Fast M-Sequence
Transforms," IEEE Transactions on Information Theory, pp. 135 - 137,
January 1976.

17. Borish, Jeffrey and Angell, James, "An Efficient Algorithm for
Measuring the Impulse Response Using Pseudorandom Noise, "J.
Audio Eng. Soc., Vol. 31, No. 7, pp. 478 - 488, July/August 1983.

18. Whalen, Anthony D., Detection, of Signals in Noise, pp. 196-225,
Academic Press, 1971.

19. Oppenheim, Alan V. and Willsky, Alan S. with Young, Ian T., Signals

and Systems, pp. 543-555, Prentice-Hall, 1983.

20. Birdsall, T.G., Metzger, K. and Spindel, Robert C., "Signal Processing

for Ocean Tomography with Moving Ships", Asilomar Conf. on Sig.,
Systems and Comp., Monterey, CA, November 1, 1988.

96


